
A Formal Model and Composition Language for Context-Aware Service Protocols

A Formal Model and Composition Language for
Context-Aware Service Protocols

Javier Cubo, Carlos Canal, Ernesto Pimentel, Gwen Salaün
University of Málaga, Spain

Presented by John Plaice
The University of New South Wales

CASTA, August 24, 2009



A Formal Model and Composition Language for Context-Aware Service Protocols

Introduction

Introduction

A model is developed for context-aware distributed objects in
which the context is a set of shared global variables, the semantics
uses synchronous rendez-vous, and the dependencies between
shared actions can be rendered explicit.

A semi-automatic mechanism is defined for creating these
dependencies.

These is a case study for going on the road again.



A Formal Model and Composition Language for Context-Aware Service Protocols

Definitions

Values, Types, Operators

Values, Types, Operators

I Let Type(3 t) be a set of types. For a given type t ∈ Type,
we write Valt for the set of possible values for t. We write
Val =

⋃
t∈Type Valt .

I Let Op(3 f ) be a set of operators. An operator signature Σ
over Op is a mapping Σ ∈ Op→ Type+ × Type defining the
types for each of the operators allowed in expressions.

I Let x ∈ X be a set of variables. Then the set of valid
expressions of signature Σ over X is written Σ(X).



A Formal Model and Composition Language for Context-Aware Service Protocols

Definitions

Contexts

Contexts

I A context attribute A ∈ A is a string. Examples are
language, temperature, etc.

I A context signature T is a mapping
T : A→ Type× Bool× Bool, with T (A) = (tA, sA, pA),
where

I tA is the type of A;
I sA determines if A is static (true) or dynamic;
I pA determines if A is public (true) or private.

I A context C of type T is a mapping C : A→ Val with
C (A) ∈ ValtA , as above.



A Formal Model and Composition Language for Context-Aware Service Protocols

Definitions

Context-Aware Transition Systems

Context-Aware Transition Systems

I A context-aware label ` is one of:
I τ (internal action);
I ?(B, a, (x1, . . . , xn)) (reception of message);
I !(B, a, (E1, . . . ,En)) (emission of message);

where B means Boolean expression and a is a message name.
I An atomic context-aware protocol P is a 6-tuple

(p, L, S , sI , SF , φ) where:
I p is the name of the protocol;
I L is a set of transition labels, as above;
I S is a set of states;
I sI is the initial state;
I SF is the set of correct final states;
I φ : S × L→ S is a transition function.



A Formal Model and Composition Language for Context-Aware Service Protocols

Definitions

Composing Context-Aware Protocols

Composing Context-Aware Protocols

Context-aware protocols can be built up through expressions:

P ::= Patomic

| P.P

| P + P

| P ‖D P

where D is a data dependency of the form (p1, `1) < (p2, `2),
implying that label `1 in protocol p1 must be executed before
label `2 in protocol p2.



A Formal Model and Composition Language for Context-Aware Service Protocols

Semantics

Multiple protocols

Operational semantics of multiple protocols

〈si , Ei 〉
a!E→ 〈s ′i , Ei 〉 〈sj , Ej〉

a?x→ 〈s ′j , Ej〉

i , j ∈ 1..n i 6= j E ′j = Ej †
{
x 7→ [[E ]]Ej

}
{
. . . , 〈si , Ei 〉, . . . 〈sj , Ej〉, . . .

} a!E→
{
. . . , 〈s ′i , Ei 〉, . . . 〈s ′j , E ′j 〉, . . .

}
〈si , Ei 〉

τ→ 〈s ′i , Ei 〉 i ∈ 1..n{
. . . , 〈si , Ei 〉, . . .

} τ→
{
. . . , 〈s ′i , Ei 〉, . . .

}



A Formal Model and Composition Language for Context-Aware Service Protocols

Semantics

Protocol composition

Operational semantics of composition language

〈s1, E1〉
`1→ 〈s ′1, E1〉

(
(p1, `1) < (p2, `2)

)
∈ D

¬in a loop(s1, `1, φ1) D ′ = remove
(
(p1, `1),D)

〈s1, E1〉 ‖D 〈s2, E2〉
`1→ 〈s ′1, E1〉 ‖D′ 〈s2, E2〉

〈s1, E1〉
`1→ 〈s ′1, E1〉

(
(p1, `1) < (p2, `2)

)
∈ D

in a loop(s1, `1, φ1)

〈s1, E1〉 ‖D 〈s2, E2〉
`1→ 〈s ′1, E1〉 ‖D 〈s2, E2〉



A Formal Model and Composition Language for Context-Aware Service Protocols

Detecting dependencies

Detecting dependencies

I Algorithm 1: Find possible dependencies (semantic matching);

I User: Manually selects among the results of Algorithm 1;

I Algorithm 2: Transitive closure of the user’s choices.



A Formal Model and Composition Language for Context-Aware Service Protocols

Concluding remarks

Concluding remarks

I An example is developed with users in cars being driven down
the road and interacting with services provided through their
mobile devices.

I Users must decide what dependencies are relevant, may end
up providing inconsistent or incomplete dependency sets.

I Future work involves handling dynamic composition
specifications.


	Introduction
	Definitions
	Values, Types, Operators
	Contexts
	Context-Aware Transition Systems
	Composing Context-Aware Protocols

	Semantics
	Multiple protocols
	Protocol composition

	Detecting dependencies
	Concluding remarks

