Orchestrating Context-Aware Systems

A Design Perspective

Alfredo Cadiz, Sebastian Gonzalez, Kim Mens
Département d’Ingénierie informatique, Université catholique de Louvain
Louvain-la-neuve, Belgium
alfredo.cadiz | s.gonzalez | kim.mens@uclouvain.be

ABSTRACT

The notion of context is becoming increasingly important
for the development of applications that can adapt dynami-
cally to their changing environment of use. The demand for
dynamic behaviour variability and behaviour interoperation
affects the whole engineering process of such applications,
and it is yet unclear how different existing solutions fit in
the process and what unsolved questions remain. In this
paper we present our view on the design of context-aware
applications, identifying some of the main aspects that need
to be addressed from a software design perspective, and how
existing approaches fit this global picture.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures;
C.5.3 [Computer System Implementation]: Microcom-
puters—Personal computers, portable devices

General Terms

Design, Languages

Keywords

Context-aware systems, system architecture

1. INTRODUCTION

The steady convergence towards systems that are aware
and reactive to their execution environment brings new func-
tional and technical challenges that were a non-issue upon
the time traditional desktop and server systems dominated
the computing platform spectrum. Thanks to the real-time
availability of information coming from their physical and
logical environment, context-aware systems have the poten-
tial to adapt swiftly to changing running conditions and
match user needs and expectations more tightly than tra-
ditional systems.

At the software level, the platform shift from systems that
are oblivious of their environment to interconnected systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CASTA’09, August 24, 2009, Amsterdam, The Netherlands.

Copyright 2009 ACM 978-1-60558-707-3/09/08 ...$10.00.

equipped with physical sensors must be accompanied by a
shift in software architectures, moving from relatively fixed,
isolated structures to more interoperable and adaptable ser-
vices. New software architectures should avoid anticipating
and articulating behaviour, favouring instead a causal con-
nection between the application’s behaviour and its chang-
ing execution environment, so that graceful adaptation to
changing contexts can take place.

In this paper we discuss main challenges and considera-
tions that need to be addressed when building systems that
can adapt to their execution context. We take a design per-
spective, having therefore as main concern the architecture
of context-aware systems: how they should be structured
to enable seamless adaptability. We start by describing a
motivating example of a system which enhances the user’s
experience by adapting itself to context. Then we present
the general software architecture we envision and continue
in subsequent sections by explaining in more detail the dif-
ferent architectural components we introduce.

2. A CONTEXT-AWARE APPLICATION

To illustrate the concepts we present in this paper, we
describe the case of a software application for a context-
aware smartphone. A smartphone is usually equipped with
localisation, battery and movement sensors. It also provides
connectivity through WiFi, EDGE, or 3G, allowing, for in-
stance, access to E-mail and VoIP.

In order to optimise the smartphone’s battery life, the
software installed on the device can adjust its behaviour ac-
cording to the current context perceived by the sensors. We
focus on the case when the device in running out of bat-
tery: The base behaviour, when context information does
not present useful resources for this functionality, is just
warning the user about the issue. The system notifies the
user showing a message on the screen and it delegates to
him the task of finding an electricity source for recharging
the batteries. In case of having data access and localisa-
tion information, we can enhance the previous message by
providing a map showing the electrical plugs or charging
stations close to the user.

Another scenario raises when the smartphone, in addition
to low battery levels, detects the user in constant movement
in unknown locations. With this supplementary information
the device can infer the user is probably unable to plug the
device to the electrical network. In this case the device can
automatically switch off the 3G connectivity and use, the
more battery-conservative, EDGE technology for all forth-
coming communications. A possible conflict can arise when

TN
K A

A Woria)
(S

Sensors Actuators

context

updates q
Context / P Behaviour

Discovery Adaptation
context represented
information context
processed
context

Context

Active
context

>

Management

Figure 1: Context-aware system architecture

the user is already on VoIP call. In order to avoid an abrupt
end of the communication, when the battery reaches a low
level of charge, in addition to a warning, the current 3G
mode should be maintained until the call is over.

In order to design such a context-aware application, we
need to consider a number of additional concerns introduced
by the use of context information: how to discover context
information, how to properly manage the available infor-
mation, how to correctly represent the current context and
how to provide a set of specialised behaviours for different
situations.

In the next sections we present an architecture for context-
aware systems which isolates and describes the concerns
listed above.

3. GENERAL SYSTEM ARCHITECTURE

Figure 1 shows the general architecture we propose for
context-aware systems. This architecture encodes the over-
all scheme of things for which we are engineering new context-
aware system programming technology. So far, we have been
active in the development of programming language abstrac-
tions [3, 4]. The architecture helps us positioning past re-
search, and in highlighting our related research that should
be looked at to future research.

Figure 1 serves as a kind of graphical index for the re-
mainder of the paper. First a context discovery subsystem
acquires and translates raw context information into a more
useful format for the application. Then a context manage-
ment subsystem resolves possible conflicts between contra-
dictory sources of context information. Once the context is
consistent it can be represented as active context for allowing
the behaviour adaptation mechanism adapt the software ac-
cording to context. The forthcoming sections explain more
in detail each subsystem.

4. CONTEXT DISCOVERY

Context awareness necessarily begins by acquiring context
information. Any piece of data that is computationally ac-
cessible can become part of the context [6]. In our example,
we can identify four sources of context information: locali-
sation, battery level, movement and phone state. The last
source comes from the application itself.

Since devices can incorporate many different sensors (phys-
ical and logic), we need to provide homogeneous access to all
possible context information, allowing the application to ab-
stract itself from the sensing details. This means we need to
translate the raw sensed data into a more useful format. For
instance, when measuring movement, we obtain values re-
garding the device’s acceleration, but the application might
just care about still, walking speed or vehicle speed.

This leads naturally to the introduction of the first main
component in our proposed architecture, the context discov-
ery subsystem, responsible for the extraction, aggregation
and deduction of contextual information [7, 9]. Such con-
textual information should be an accurate depiction of the
surrounding environment at any moment in time. Besides
the surroundings, contextual information also encompasses
the internal state of the device. Applications can adapt their
behaviour according to this joint computational snapshot of
the external world and the device’s state.

The context discovery subsystem helps applications cope
with the heterogeneity of context sources. Each kind of con-
text information is sensed in a different way: a battery sen-
sor provides the remaining battery charge, a location sensor
provides the geographical coordinates, and a movement sen-
sor shows values on the three spatial axes.

Although having such a context discovery component seems
reasonable, even though modern Software Development Kits
(SDKs) such as the iPhone’s free the application from han-
dling low-level communications with sensors, they do not
provide predefined abstractions and frameworks for modu-
larising and customising context sensing, leaving this task to
the developer. Approaches such as the Context Toolkit [9]
and WildCat [2] do allow applications to abstract away from
discovering and presenting context. These approaches pro-
vide two modes for providing context information to the base
application: pull mode and push mode. The first allows the
application to ask for the information when needed, and the
latter allows the application to subscribe to updates on any
source of information. All the context sensing logic is cen-
tralised in an independent module, allowing the application
to query for data using an homogeneous protocol.

However, gathered information can sometimes be contra-
dictory or irrelevant. The system should be able to filter
information and resolve conflicts to select the most appro-
priate adaptation. This is the role of the next subsystem in
the architecture.

5. CONTEXT MANAGEMENT

Even if we can sense and translate context information
in a useful format for applications, problems arise when the
information becomes contradictory. As applications become
more aware of their surroundings, and information comes
from many different sources, two or more different pieces
of context information can promote different and, in some
cases, inconsistent adaptations to the application.

In our example in Section 2 we defined different adapta-
tions according to possible situations regarding a low battery
scenario. Additionally, we also considered an exceptional
case when the smartphone is in use and its behaviour can-
not be adapted until the call is over. In this case we should
hold the adaptation until the phone is idle again and avoid
affecting the user’s current call.

General-purpose languages provide little or no support for
resolving possible conflicts caused by contradictory context

information. In addition, depending on the level of conflicts
in a particular system, resolving them can become an ex-
tremely complex task, requiring more elaborated solutions.

The conflict resolution concerns should all be handled by
a context management component which is in charge of pro-
cessing the context information gathered by the context dis-
covery component. We can find many different approaches
for such a subsystem: SOCAM [5] in addition to its con-
text discovery capabilities, allows the definition of first-order
logic rules for combining context and triggering related ac-
tions. CRIME [8] introduces a federated fact space for allow-
ing the construction and maintenance of a knowledge base
of context information. This, combined with a logic coordi-
nation language allows the definition of rules for processing
the knowledge and reaching the most appropriated action
for each state of the knowledge base.

The resulting set of processed context information must
be consistent enough for allowing the application to adapt
itself according to the current world state. Then, for al-
lowing dynamic adaptation to context we need to create a
link between the application logic and the active context at
run-time. This will be discussed in the next Section.

6. ACTIVE CONTEXT

Once context information is captured as raw data; trans-
lated into an appropriate format by the context discovery
subsystem, and the context management subsystem has fil-
tered and solved conflicts in incoming context information,
we obtain the active context, which is consistent and can be
made visible, at run-time, to the application.

Context information should be meaningful enough for let-
ting the application know the relationships between different
pieces of context information. By relating different pieces of
context we allow the creation of families of contexts sharing
similar characteristics and the application can exploit these
relationships for reusing adaptation logic. These relation-
ships are provided by the developer when implementing the
application’s context-aware logic.

In Figure 2 we can see part of the context information re-
lated to the example presented in Section 2. In this case, the
home and office contexts are related to the known-location
context and this last context will promote adaptations which
are valid for all the known places, for instance, redirecting
the call to the closest fixed line. This is possible because
when either home or office becomes active, also known-
location will be active as well.

This kind of active context representation can be found
in Ambience [3, 4], a context-aware prototype-based lan-
guage with multiple dispatch. Ambience features first-class
contexts and supports representation of context information
as object graphs. Contexts can be related using delegation
links and thus families of contexts can be created. This al-
lows defining specialised behaviour for a context and include
all the subcontexts delegating to it.

The active context does not imply a specialised subsys-
tem, but needs to be considered as the glue between the
context information and the application’s logic. This allows
the latter select the most appropriate adaptation at run-time
by checking the current active context, which represents the
current state of the surrounding world. In the next section
we discuss how languages can adapt their behaviour accord-
ing to their active context.

known-location

OS G office
online O

WiFi

context

EDGE

Figure 2: Partial Context organisation for example
of Section 2.

7. BEHAVIOUR ADAPTATION

So far we have presented abstractions for sensing, reason-
ing and representing the active context information. Once
the application can see a consistent representation of the
context information it can enhance its functionality for se-
lecting the most appropriate behaviour according to the cur-
rent context. The effective use of that information is still a
challenging problem for application programmers.

General purpose languages such as C++, Java or Objective-
C can provide dynamic adaptation to context, with some
considerations. We need to foresee the application’s vari-
ation points at design time, since we need to implement
and integrate the mechanisms for selecting from different
behaviours in the application’s code. To select the most ap-
propriate context we can implement a design pattern, such
as the strategy pattern, for encapsulating different possible
behaviours.

The schema mentioned above can be acceptable when the
application is limited to a few fixed and previously defined
variation points. Problems arise when we need to introduce
new variation points into the application. We would need to
rewire our defined machinery for the new variation points.
Also we experiment an explosion of classes related to the
design pattern implementing our dynamic adaptations and
each encapsulated behaviour.

Considering more powerful and sensor-enriched devices,
we cannot assume few variation points. Every functionality
can be modified by context at run-time and new adaptations
can be needed as the environment evolves. As mentioned
above, using traditional design patterns we experiment a
huge overhead related to all the machinery needed for pro-
viding dynamic adaptation to context.

Context-oriented programming languages (COP) have been
proposed as an alternative and more elegant solution for
dealing with the increasing need to adapt software to con-
text at run-time. ContextL [1] is a CLOS extension which
adds additional behaviour to classes in the form of layers.
When a layer is activated the class will present the new be-
haviour defined in the layer. Ambience [3, 4] proposes a
prototype with multiple dispatch object model. Ambience
provides first-class contexts and they can be associated with
methods. When a context is active, the specialized version
of the method is invoked. ContextL and Ambience allow the
separation of base behaviour from context-dependent adap-
tations.

In our smartphone example from Section 2 we have de-
scribed behaviour which is affected by context information.
Using a COP language such as Ambience it is possible to
explicitly separate each piece of behaviour corresponding to
a different context:

(defmethod call ((from @phone) (to @phone))
. Make a call ...)

(with-context (@low-batt)
(defmethod call ((from @phone) (to @phone))
. Show warning message
(resend)))

(with-context (Q@low-batt @online)
(defmethod call ((from @phone) (to @phone))
. Search for electricity and show map
(resend)))

(with-context (@low-batt @unknown-location @3G)
(defmethod call ((from @phone) (to @phone))
. Switch to EDGE...
(resend)))

The code above shows how the four possible situations
can be implemented. All the methods share the same sig-
nature. The first one represents the base case, while the
other three contain the specialised behaviour according to
the possible contexts. The active context information is ex-
plicitly associated to the methods defined in the scope of
the with-context construct and they do not override the
methods defined in another set of context. The resend key-
word calls the next most specialised implementation of the
method. This is how code can be reused. In the snippet
above, the code implementing a phone call is implemented
at the first method only.

When an application executes its adapted behaviour, it
can either explicitly or implicitly change the state of the
context information. The first can happen when the ap-
plication updates its internal state, such as being idle or
performing a call. The latter happens when adapted be-
haviour stimulates its surrounding world in such a way that
sensed context information changes thanks to the new be-
haviour. In our example from Section 2 switching to EDGE
changes the context information about the device’s connec-
tivity. This reaction on the context information closes the
cycle presented in Figure 1.

8. CONCLUSIONS

Context-aware systems raise questions as to how such ap-
plications should be architected. Potentially large amounts
of information need to be assimilated by the system to build
an accurate representation of the current context. Besides
discovering the context and managing its computational rep-
resentation, we need adequate tools to build applications
that can adapt to such context.

In this paper we have presented our vision on the global ar-
chitecture of the kind of context-aware system we aim at ob-
taining. The different architectural components follow from
the main basic requirements that need to be addressed to
enable dynamic adaptation to context. Even though this
architecture is fairly general, it already provides a first defi-
nition of the issues that should be taken into account when
building context-aware systems.

9. ACKNOWLEDGEMENTS

This work has been supported by the ICT Impulse Pro-
gramme of the Institute for the encouragement of Scientific
Research and Innovation of Brussels and by the Interuni-
versity Attraction Poles Programme of the Belgian State,
Belgian Science Policy.

10. REFERENCES

[1] P. Costanza and R. Hirschfeld. Language constructs for
context-oriented programming: an overview of
ContextL. In Proceedings of the Dynamic Languages
Symposium, pages 1-10. ACM Press, Oct. 2005.
Co-located with OOPSLA’05.

[2] P.-C. David and T. Ledoux. Wildcat: a generic
framework for context-aware applications. In MPAC
’05: Proceedings of the 3rd international workshop on
Middleware for pervasive and ad-hoc computing, pages
1-7, New York, NY, USA, 2005. ACM.

[3] S. Gonzélez, K. Mens, and A. C4diz. Context-Oriented
Programming with the Ambient Object System.
Journal of Universal Computer Science,
14(20):3307-3332, 2008.

[4] S. Gonzélez, K. Mens, and P. Heymans. Highly
dynamic behaviour adaptability through prototypes
with subjective multimethods. In Proceedings of the
Dynamic Languages Symposium, pages 77-88. ACM
Press, Oct. 2007. Co-located with OOPSLA’07.

[5] T. Gu, H. K. Pung, and D. Q. Zhang. A
service-oriented middleware for building context-aware
services. J. Netw. Comput. Appl., 28(1):1-18, 2005.

[6] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented programming. Journal of Object
Technology, 7(3):125-151, March—April 2008.

[7] C.-H. Hou, H.-C. Hsiao, C.-T. King, and C.-N. Lu.
Context discovery in sensor networks. In International
Conference on Information Technology: Research and
Education (ITRE), pages 2-6. IEEE Computer Society
Press, 2005.

[8] S. Mostinckx, C. Scholliers, E. Philips, C. Herzeel, and

W. De Meuter. Fact spaces: Coordination in the face of

disconnection. In 9th Int. Conf. on Coordination Models

and Languages, volume 4467, pages 268-285, June 2007.

D. Salber, A. K. Dey, and G. D. Abowd. The context

toolkit: aiding the development of context-enabled

applications. In CHI ’99: Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 434-441, New York, NY, USA, 1999. ACM.

9

