
A Formal Model and Composition Language for
Context-Aware Service Protocols

Javier Cubo, Carlos Canal, Ernesto Pimentel and Gwen Salaün
Dept. of Computer Science, University of Málaga, Spain

{cubo,canal,ernesto,salaun}@lcc.uma.es

ABSTRACT
We first define a model to formalise context-aware clients
and services. Then, we propose a composition language
available on the user’s device to execute and handle concur-
rently interactions with several services at the same time.

Categories and Subject Descriptors
H.1 [Models and Principles]: Miscellaneous; D.2.10 [Soft-
ware Engineering]: Design—methodologies

General Terms
Algorithms, Design, Languages

Keywords
Context-Awareness, Service Protocol, Composition Language

1. INTRODUCTION
Context-awareness enables a new class of applications in

mobile and pervasive computing, providing the most rele-
vant information to users, and adapting themselves to their
situation and preferences. Context information can help
users to find nearby services, decide the best service to use
(according to the location, connectivity, bandwidth, etc.),
control reaction of systems depending on certain situations,
find people with similar interests, and so on. Thus, a system
using context information can be easily self-adaptive [4], by
reducing human effort in the human-computer interaction.

We focus on clients (users with a device) and services
modelled with protocols. Protocols are essential because er-
roneous executions or deadlock situations may occur if the
designer does not take them into account while composing
clients and services [2, 6]. We also consider context infor-
mation as well as conditions in protocols that specify how
applications should react to context changes. We first for-
malise a model for context-aware clients and services. Sec-
ond, we propose a composition language incorporated inside
the user’s device to handle at run-time the concurrent ex-
ecution of the client with several services. This language
defines an operator controlling the data dependencies exist-
ing among different protocols executed at the client level.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASTA’09, August 24, 2009, Amsterdam, The Netherlands
Copyright 2009 ACM 978-1-60558-707-3/09/08 ...$10.00.

The rest of this paper is structured as follows: Section 2
presents our model formalising context-aware clients and
services. Section 3 describes our composition language. Sec-
tion 4 presents a case study to illustrate our proposal. Last,
Section 5 ends the paper with some concluding remarks.

2. CONTEXT-AWARE SERVICE MODEL
In this section, we formalise the syntax and operational

semantics of our context-aware service model.

2.1 Interface Model
In our approach, a system consists of context-aware clients

and services. We assume that clients and services are spec-
ified using a context profile, signatures and protocols. Con-
text profile defines information depending on client and ser-
vice environment. Signatures correspond to operation pro-
files. Protocols are represented by means of Labelled Tran-
sition Systems (LTSs) extended with value passing [2], con-
text variables and conditions, that we call Context-Aware
Symbolic Transition System (CA-STS). In our model, con-
texts are called context attributes. We represent the service
context information by using a context profile, which is con-
stituted of a set of context attributes with associated val-
ues. Both clients and services are characterised by public
(weather, temperature, season, ...) and private (personal
data, bandwidth, local resources, ...) context attributes of
their context profile. We also differentiate static context
attributes (e.g., role, preferences, day, ...) and dynamic
ones (e.g., connectivity, time, location, temperature, ...).
Dynamic attributes can change continuously at run-time,
therefore they have to be dynamically evaluated during the
service composition.

D e fini ti on 1 (Conte x t Profil e ) A C ontext Profil e i s a set
of tuples (CA, CV, CT, CP ), where: CA is a context at-
tribute or simply context (e.g., language) with its correspond-
ing value CV (e.g., english), CT determines if CA is static
or dynamic, and CP indicates that CA is public or private.

Definition 2 (Signature) A Signature is a set of opera-
tion profiles. This set is a disjoint union of provided and
required operations. An operation profile is the name of an
operation, with its argument types and its return type.

Definition 3 (Variable) A variable is defined as Y ::=
p|ũ, where: p are regular variables, which include static con-
text attributes, and ũ are context variables corresponding to
dynamic context attributes.

17



Definition 4 (Expression) An expression is defined as
X ::= Y |f(X1, . . . , Xn), where: Y is a variable, and f is a
function f ∈ Σf .

Definition 5 (CA-STS Label) A label corresponding to
a transition of a CA-STS is either an internal action (tau)
or a tuple (B, M, D, X) representing an event, where: B
is a condition (represented by a boolean expression), M is
the message name, D is the direction of messages (! and
? represent emission and reception respectively), and X is a
list of expressions if the message corresponds to an emission,
or a list of variables if the message is a reception.

Definition 6 (CA-STS Protocol) A Context-Aware Sym-
bolic Transition System (CA-STS) protocol is a tuple (A, S,
I, F c, T ), where: A is an alphabet which corresponds to the
set of CA-STS labels associated to transitions, S is a set of
states, I ∈ S is the initial state, Fc ⊆ S are correct final
states, and T : S × A × S is the transition function whose
elements are noted by the expression s1

a−→ s2.

Definition 7 (Service Interface) A service interface is a
tuple (CP, S, P ), where: CP is a context profile, and S is a
signature with its corresponding CA-STS protocol P .

Our communication model is synchronous and binary (see
Section 2.2 for more details). Clients can execute several
protocols simultaneously (concurrent interactions). Client
and service protocols can be instantiated several times. Client
and service interfaces can be specified using: (i) XML files
for context profiles, (ii) WSDL for signatures, and (iii) busi-
ness processes defined in industrial platforms, e.g., Abstract
BPEL (ABPEL) or WF workflows (AWF) [1], for protocols.

2.2 Operational Semantics of CA-STS
In the following, we use a couple 〈s, E〉 to represent an

active state s ∈ S and an environment E. An environment
is a set of couples 〈x, v〉 where x is a variable, and v is the
corresponding value of x. We use boolean expressions b to
describe CA-STS conditions. We also use a function type
which returns the type of a variable. Two evaluation func-
tions are used to evaluate expressions into an environment:
(i) ev evaluates regular variables or boolean expressions, and
(ii) evc evaluates context variables changing dynamically.
We define ev (evc is the same as ev for contexts) and the
environment overloading “�” as follows:

E � 〈x, v〉 � E(x) = v ev(E,x) � E(x)

ev(E, f(v1, . . . , vn)) � f(ev(E, v1), . . . , ev(E, vn))

We present in Figure 1 the semantics of a CA-STS (−→o),
with three rules that formalise the meaning of each kind of
CA-STS labels: τ (TAU), emissions (EM), and receptions
(REC). The operational semantics of n (n > 1) CA-STSs
(−→c) is formalised using a synchronous communication rule
(COM, Figure 2) in which value-passing and variable sub-
stitutions rely on a late binding semantics [3], and an inde-
pendent evolution rule (INEτ , Figure 2). A list of couples
〈si, Ei〉 is represented by {as1, . . . , asn}. Rule COM uses
the function evc to evaluate dynamically in the receiver the
context changes of dynamic context attributes of the sender.

3. COMPOSITION LANGUAGE
This section describes a composition language that allows

to execute and handle concurrently interactions between a

client and several services at the same time. Our language
addresses data dependency issues that appear in the concur-
rent execution of client protocols, since data received by a
client are shared and can be accessed by several protocols.

3.1 Syntax
A client can execute a sequence of the form P1.P2, where

P1 and P2 are two protocols: “execute P1 and then P2”. A
non-deterministic choice P1 +P2 can be performed: “run P1

or P2”. The concurrent execution of two protocols P1, P2

is written P1||LDP2: “execute P1, P2 in parallel while re-
specting data dependencies specified in LD”. LD is a set
of label dependencies {(id : l > id′ : l′)}, where l an l′ are
labels, and id and id′ are protocol identifiers prefixing the
labels. LD represents dependencies between arguments in-
volved in the labels of these protocols. Symbol “>” indicates
the order of execution in which labels must be executed (e.g.,
(p1 : l > p2 : l′), l is executed before l′). Table 1 formalises
the syntax of the composition language.

Table 1: Syntax of the Composition Language
P ::= P1.P2 sequence

| P1 + P2 non-deterministic choice
| P1||LDP2 parallel dependency

3.2 Operational Semantics
The rules presented in Figure 3 give an operational se-

mantics to each operator presented in Table 1. Both + and
||LD are commutative, therefore the symmetrical rules are
omitted. Label l represents either the internal action τ , an
emission a!v, or a reception a?x. PLD1 performs the con-
current execution of the protocols P1 and P2 w.r.t. a label
dependency (p1 : l > p2 : l′), and removes the label de-
pendencies which include l as first element from the label
dependency set LD. PLD2 works as PLD1, but without
removing label dependencies, since l appears in a loop in
its protocol. Last, PLD3 executes a label which does not
belong to the label dependency set.

Function remove eliminates the label dependencies which
includes l as first element from a label dependency set LD =
{ld1, . . . , ldn}:

remove(l, {ld1, . . . , ldn}) = {ldi|ldi = (l1 > l2) ∈ {ld1, . . . , ldn}
∧ l1 �= l}

Function in a loop returns true if label l belongs to a loop
in transitions T starting from state s, or false otherwise:

in a loop(s, l, T ) = ∃seq = [l1, . . . , ln] ∧ l ∈ {l1, . . . , ln} ∧
s

l1−−→ s1 ∈ T ∧ . . . ∧ sn−1
ln−−→ s ∈ T

Functions get dominant label and get dominated label re-
turn respectively the dominant and dominated labels from
a label dependency (id : l > id′ : l′):

get dominant label((id : l > id′ : l′)) = id : l

get dominated label((id : l > id′ : l′)) = id′ : l′

3.3 Dependency Analysis
Dependency analysis is a technique to identify and de-

termine data dependencies between service protocols. The
main difficulty in analysing dependencies for concurrent exe-
cutions is how to obtain the relationship between arguments.
Protocols evolving concurrently need to impose an order
in their execution if there exist data dependencies. A de-
pendency occurs when a protocol receives a data, which is
stored in the user’s device, and when another client proto-
col accesses this data (e.g., wants to send it). To detect and
handle these dependencies, our semi-automatic dependency

18



(s
b,τ−−−→ s′) ∈ T

ev(E, b) = true

〈s, E〉 τ−−→o 〈s′, E〉
(TAU)

(s
b,a?x−−−−−→ s′) ∈ T

ev(E, b) = true

〈s, E〉 a?x−−−→o 〈s′, E〉
(REC)

(s
b,a!v−−−−→ s′) ∈ T ev(E, b) = true

v′ = ev(E, v)

〈s, E〉 a!v′
−−−−→o 〈s′, E〉

(EM)
Figure 1: Operational Semantics of one CA-STS

〈si, Ei〉 a!v−−−→o 〈s′i, Ei〉 〈sj , Ej〉 a?x−−−→o 〈s′j , Ej〉
i, j ∈ {1..n} i �= j type(x) = type(v) E′

j = Ej 	 〈x, evc(Ej , v)〉
{as1, .., 〈si, Ei〉, .., 〈sj , Ej〉, .., asn} a!v−−−→c {as1, .., 〈s′i, Ei〉, .., 〈s′j , E′

j〉, .., asn}
(COM)

〈si, Ei〉 τ−−→o 〈s′i, Ei〉
i ∈ {1..n}

{as1, .., 〈si, Ei〉, .., asn} τ−−→c {as1, .., 〈s′i, Ei〉, .., asn}
(INEτ )

Figure 2: Operational Semantics of n CA-STSs

〈s1, E1〉 l−→o 〈s′1, E1〉
〈s1, E1〉.〈s2, E2〉 l−→o 〈s′1, E1〉.〈s2, E2〉

(SEQ1)

〈s2, E2〉 l−→o 〈s′2, E2〉 s1 ∈ Fc1

〈s1, E1〉.〈s2, E2〉 l−→o 〈s′2, E2〉
(SEQ2)

〈s1, E1〉 l−→o 〈s′1, E1〉
〈s1, E1〉 + 〈s2, E2〉 l−→o 〈s′1, E1〉

(NDCH)

〈s1, E1〉 l−→o 〈s′1, E1〉 (p1 : l > p2 : l′) ∈ LD
LD′ = remove(p1 : l, LD) ¬in a loop(s1, l, T1)

〈s1, E1〉||LD〈s2, E2〉 l−→o 〈s′1, E1〉||LD′〈s2, E2〉
(PLD1)

〈s1, E1〉 l−→o 〈s′1, E1〉 (p1 : l > p2 : l′) ∈ LD
in a loop(s1, l, T1)

〈s1, E1〉||LD〈s2, E2〉 l−→o 〈s′1, E1〉||LD〈s2, E2〉
(PLD2)

〈s1, E1〉 l−→o 〈s′1, E1〉 ∀ld ∈ LD(p1 : l �∈ get dominant label(ld) ∧ p1 : l �∈ get dominated label(ld))

〈s1, E1〉||LD〈s2, E2〉 l−→o 〈s′1, E1〉||LD〈s2, E2〉
(PLD3)

Figure 3: Operational Semantics of the Composition Language

analysis process consists of three steps: (i) a first algorithm
computes a set of pairs of label dependencies between two
protocols, (ii) the user selects some of these pairs and chooses
their order of execution, which allows to build an initial la-
bel dependency set, and (iii) a second algorithm expands the
dependencies chosen by the user to a set as required by the
semantic rules PLD1, PLD2 and PLD3 (Figure 3).

The first step is performed by Algorithm 1, that takes
as input two protocols, and returns all their label depen-
dencies among the argument types of their operation pro-
files. Our algorithm determines that two labels are de-
pendent by using the functions degreeOfmatch, defined by
Paolucci et al. [5] (page 339), and type to compare their ar-
guments and types, respectively. Function degreeOfmatch
defines four degrees of matching based on semantic match-
ing: {exact,plugIn,subsume,fail}. The degree fail in-
dicates that the two arguments compared do not match se-
mantically, so we do not consider that there exists a data
dependency between them. The remaining three indicate
that there is a semantic-based data dependency between the
arguments. Function arguments in Algorithm 1 gets all the
arguments from a label l: arguments(l = (b, m, d, x)) = x

In the second step, the set of pairs of label dependencies
returned by the previous algorithm is showed to the user.
The user selects the pairs of label dependencies he/she wants
to preserve, and chooses the execution order for each pair.
The result is a label dependency set. Given LDp = {(p1 :
l, p2 : l′), (p1 : l, p2 : l′′)}, if the user: (i) selects the first
pair, and (ii) indicates that l′ has to be executed before l,
then the result will be LD = {(p2 : l′ > p1 : l)}.

Last, Algorithm 2 takes as input the two protocols taken
as input to Algorithm 1 and the set generated in the former
step, and returns an extended label dependency set. Let
(p2 : l′ > p1 : l) be a label dependency where l′ and l are
called dominant and dominated label, respectively. The al-
gorithm expands the set of label dependencies required by
the semantic rules PLD1, PLD2 and PLD3. For each la-

Algorithm 1 pairs label dependencies
returns a set of pairs of label dependencies for two protocols
inputs protocols P1 = (A1, S1, I1, Fc1, T1) and P2 =
(A2, S2, I2, Fc2, T2)
output a label dependency set LDp

1: LDp := ∅ // initial value for set of pairs of label dependency
2: for all lp1 ∈ A1 do
3: Alp1 := arguments(lp1) // gets the arguments of lp1

4: for all lp2 ∈ A2 do
5: Alp2 := arguments(lp2) // gets the arguments of lp2

6: ATD := false // by default no dependencies
7: for all arglp1 ∈ Alp1 do

8: for all arglp2 ∈ Alp2 do

9: DMarg := degreeOfmatch(arglp1 , arglp2)

10: DMtyp := type(arglp1 ) = type(arglp2)

11: if DMarg �= fail ∧ DMtyp then
12: ATD := true // argument and type dependency
13: end if
14: end for
15: end for
16: if ATD then
17: LDp := LDp ∪ (p1 : lp1, p2 : lp2) // adds a pair
18: end if
19: end for
20: end for
21: return LDp // returns a set of pairs of label dependencies

bel dependency ld the algorithm selects all the labels pli,
i ∈ {1, . . . , n} preceding the dominant label of ld in the cor-
responding protocol. Then, for each pli the algorithm adds
a new label dependency constituted by that pli as dominant
label and the dominated label of ld as dominated label. For
instance, if we have two protocols P1 with labels l, l′ in se-
quence and P2 with l′′, and LD = {(p1 : l′ > p2 : l′′)} is the
label dependency set obtained in the second step, then Al-
gorithm 2 returns a new label dependency set LDe = {(p1 :
l > p2 : l′′), (p1 : l′ > p2 : l′′)}.

Function get id protocol gets the protocol identifier of a
dominant or a dominated label (id : l):

get id protocol((id : l)) = id

19



Algorithm 2 extended label dependencies
returns an extended set of label dependencies from a LD
inputs protocols P1, P2, label dependency set LD
output a label dependency set LDe

1: LDe := LD // sets the extended set equal to LD
2: for all ld ∈ LD do
3: fl := get dominant label(ld) // gets the dominant label
4: sl := get dominated label(ld) // gets the dominated label
5: fp := get id protocol(fl) // id of protocol of dominant label
6: sp := get id protocol(sl) // id of protocol of dominated label
7: PL := get previous labels(fl, Tfp) // previous labels in Pf

8: for all pl ∈ PL do
9: if (pf : pl > ps : sl) /∈ LDe then
10: LDe := LDe ∪ (pf : pl > ps : sl)
11: end if
12: end for
13: end for
14: return LDe // returns the extended set of label dependencies

Function get previous labels returns all the labels preceding
a label l in transitions T of a protocol:
get previous labels(l, T ) = {li|seq = [l1, . . . , ln, l] ∧ li ∈ {l1, . . . ,

ln}∧(s, l1, s1) ∈ T∧. . .∧(sn−1, ln, sn) ∈ T∧(sn, l, sn+1) ∈ T}

4. CASE STUDY: ROAD INFO SYSTEM
For illustration purposes, let’s consider a system that con-

sists of users travelling by car on a road and using safely
mobile devices (called clients), and info services providing
information requested by the clients, such as routes, restau-
rants, gas stations, or multimedia entertainments (movies,
music, images, ...). As an example, we suppose that a Client,
before starting the trip, wants to obtain a route. After-
wards he/she wants to perform the purchase of a movie for
his/her kids and to download a song at the same time. To
calculate the route, the Route Service considers the con-
text information related to the Client location loc (dynamic
context attribute) and to the traffic and weather of the en-
vironment (also dynamic attributes), that may change. To
download the movie and the song, the Entertainment Ser-
vice takes into account Client privileges priv (dynamic at-
tribute), and its server load (dynamic attribute). In ad-
dition, the Client language (static attribute) is also taken
into account for the movie. Thus, when changes in dynamic
context loc occur, the Route Service has to recompute the
route according to the new location (function evc in rule
COM, Figure 2). In Figure 4 are given the Client protocols
for the scenario previously described. For space reasons,
corresponding service protocols are not depicted. RC is the

Client

Route Protocol (RC)

Movie Protocol (MC)

lrc1=reqRoute !dest,lõc
r0

lrc2=getRoute?route

lmc1=reqMovie!movie,lang ,prĩv
m0

m1

lmc2=priceItem?movie,price

m2

lmc3=checkAccount!bankAccount

m3

lmc4=bankBalance ?balance

Music Protocol (SC)

lsc1=reqSong !song,prĩv
s0

s1

lsc2=priceItem?song,price

s2

lsc3=checkAccount!checkingAccount

Context Profile
loc (dynamic )
lang (static)

priv (dynamic)

r1

m4

m5

lmc5=[balance≥price]
buyItem!movie

lmc6=ack?
m6

lmc7=[balance<
price]cancel!

s3

lsc4=bankBalance?credit

s4

s5

lsc5=[credit≥price]
buyItem!song

lsc6=confirm?
s6

lsc7=[credit<
price]cancel!

Figure 4: CA-STS Client Protocols for our Scenario

protocol identifier which represents the Route Client proto-
col communicating with the Route Service. MC and SC
identify the Movie and Music Client protocols respectively,
and both interact with the Entertainment Service. We have,

e.g., RC : lrc1 = reqRoute!dest, ˜loc, where: dest is a data
term which indicates the destination requested for the route,
and ˜loc is a dynamic context attribute of the Client con-
text profile. The Route Service protocol RS receives the
request through an operation profile such as RS : lrs1 =
setRoute?dest, loc where: dest and loc are variables. In our
scenario, the Client wants to execute the protocol RC in
sequence with the parallel execution of the protocols MC
and SC: RC.(MC||LDSC). Now, let’s build the set of label
dependencies between MC and SC. First, Algorithm 1 re-
turns a set of pairs of label dependencies between MC and
SC: LDp = {(lmc3 , lsc3), (lmc4 , lsc4}, since bankAccount
is semantically similar to checkingAccount and balance to
credit, respectively. Then, this set is given to the user, who
selects the pairs of label dependencies he/she wants to pre-
serve, and chooses the execution order for each pair. Let’s
suppose the user only selects the pair (lmc3 , lsc3) to control
the concurrent execution of the operation checkAccount in
both MC and SC, by executing lmc3 before lsc3 : LD =
{(lmc3 > lsc3)}. Last, Algorithm 2 takes LD as input and
extends it with new dependencies needed to execute the se-
mantic rules PLD1, PLD2 and PLD3. Thus, we obtain the
final label dependency set: LDe = {(lmc1 > lsc3), (lmc2 >
lsc3), (lmc3 > lsc3)}. This means that, e.g., for (lmc1 > lsc3),
lmc1 is executed before lsc3 , i.e., the label MC : lmc1 =
reqMovie!movie, lang, ˜priv is executed before the label SC :
lsc3 = checkAccount!checkingAccount.

5. CONCLUSIONS
In this paper, we have proposed a formal model for context-

aware services, and a composition language to handle the
concurrent execution of service protocols, by defining al-
gorithms able to detect data dependencies among several
protocols executed on a same user’s device. Our proposal
mainly aims at being applied to pervasive systems and social
networks. As regards future work, we first plan to propose
verification techniques to automatically detect possible in-
consistences specified by the user while building the data
dependency set. We also want to handle the execution of a
composition specification that can be dynamically modified.
Last, we want to detect and solve possible problems raised
during the execution, such as exceptions or connection loss.

Acknowledgements. This work has been partially sup-
ported by the projects TIN2008-05932 and P06-TIC-02250.

6. REFERENCES
[1] J. Cubo, G. Salaün, C. Canal, E. Pimentel, and P. Poizat. A

Model-Based Approach to the Verification and Adaptation
of WF/.NET Components. In Proc. of FACS’07, volume 215
of ENTCS, pages 39–55. Elsevier, 2007.

[2] R. Mateescu, P. Poizat, and G. Salaün. Adaptation of
Service Protocols using Process Algebra and On-the-Fly
Reduction Techniques. In Proc. of ICSOC’08, volume 5364
of LNCS, pages 84–99, 2008.

[3] R. Milner, J. Parrow, and D. Walker. Modal Logics for
Mobile Processes. Theor. Comput. Sci., 114(1):149–171,
1993.

[4] O. Nierstrasz, M. Denker, and L. Renggli. Model-Centric,
Context-Aware Software Adaptation. In Software
Engineering for Self-Adaptive Systems, volume 5525 of
LNCS, pages 128–145, 2009.

[5] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara.
Semantic Matching of Web Services Capabilities. In Proc. of
ISWC’02, volume 2342 of LNCS, pages 333–347, 2002.

[6] F. Plasil and S. Visnovsky. Behavior Protocols for Software
Components. IEEE TSE, 28(11):1056–1076, 2002.

20


