
Safe Reflection Through Polymorphism

Toon Verwaest Lukas Renggli
Software Composition Group

University of Bern, Switzerland
http://scg.unibe.ch/

ABSTRACT
Code executed in a fully reflective system switches back and
forth between application and interpreter code. These two
states can be seen as contexts in which an expression is eval-
uated. Current language implementations obtain reflective
capabilities by exposing objects to the interpreter. However,
in doing so these systems break the encapsulation of the ap-
plication objects. In this paper we propose safe reflection
through polymorphism, i.e. by unifying the interface and
ensuring the encapsulation of objects from both the inter-
preter and application context. We demonstrate a homoge-
neous system that defines the execution semantics in terms
of itself, thus enforcing that encapsulation is not broken.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms
Design, Languages

Keywords
Contexts, Reflection, Encapsulation, Virtual Machines

1. INTRODUCTION
Programming languages define high-level views over the

execution semantics of a host system. Often these abstrac-
tion layers completely hide the internal semantics, and thus
make it hard for application code to cross the barrier put up
by the programming language between the high-level model
and the low-level execution engine.

Crossing this barrier is especially important for building
new types of languages. Existing language implementations
might not always rely on the same assumptions as new lan-
guages, making it tedious for the new language to work

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASTA’09, August 24, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-707-3/09/08 ...$10.00.

around those of the host system. For example, to add back-
tracking support to Smalltalk the designer has to manually
realign Smalltalk’s stack frames since this is the only way
the execution semantics of Smalltalk can be changed.

Even more important is that the effort needed to work
around decisions in a host system often imposes an overhead
on the performance of the new language. An example of such
a situation is where functional languages are implemented
on top of the Java Virtual Machine. The JVM assumes
that stack frames are needed for each call, while functional
programming languages rely on recursion and thus require
tail-call optimization.

Current mainstream interpreters internally consider the
application code as data. By directly accessing this data
to decide on how to proceed with the interpretation, they
however break the encapsulation of the application. When
an interpreter becomes more reflective applications can harm
their own runtime by breaking the assumptions made by the
interpreter.

In this paper we propose a bottom-up approach to reflec-
tion. By building a homogeneous system, i.e. defining a
programming language’s execution semantics in terms of it-
self, we ensure that encapsulation is not broken. Encapsula-
tion enables reusability [2], thus the same interpreter can be
used for different languages. To bootstrap the system, cir-
cular dependencies are broken by introducing objects that
know how to perform the required low-level evaluation. We
uniformly impose the same strong encapsulation upon all ob-
jects of the system. Interpretation and application contexts
communicate with each other using the same mechanisms.

2. THE ENCAPSULATION PROBLEM
Maes [7] stated that for a programming language to be re-

flective, it has to guarantee causal connection between data
representing (aspects of) the interpreter and the interpreter
they represent. Current mainstream languages take a top-
down approach to adding reflection. They start from be-
ing totally non-reflective and add reflective capabilities step
by step by gradually adding application-level objects to the
interpreter-level objects. This process gives language de-
velopers access to certain parts of the interpreter. However,
this also implies there are two representations of the running
interpreter and the objects it executes, one for the applica-
tion level and one for the interpreter level. To ensure causal
connection, a system to synchronize the two levels must be
put in place.

Reflective languages typically allow applications to com-
municate with the interpreter through two main mecha-

21

http://scg.unibe.ch/

nisms. In places where a specific type of object is expected,
the system normally allows other objects to be passed in
that

1. follow a certain meta-object protocol, or

2. that conform to a predefined memory layout.

The first kind of reflection is typically used by object-oriented
systems with support for first-class functions. The code be-
low is taken from PyPy [9], an object-oriented Python in-
terpreter written in itself1.

def get_and_call_args(space, w_descr, w_obj, args):
descr = space.interpclass_w(w_descr)
a special case for performance and
to avoid infinite recursion
if type(descr) is Function:

return descr.call_obj_args(w_obj, args)
else:

w_impl = space.get(w_descr, w_obj)
return space.call_args(w_impl, args)

The code assumes that there are two types of functions: (1)
native functions that are evaluated at the interpreter-level
using call_obj_args, and (2) user defined function objects
that are evaluated at the application-level using call_args.

This approach breaks the encapsulation of both inter-
preter and application level function objects. The inter-
preter directly accesses the internals of the function objects
to test their type and to evaluate them either at the inter-
preter or application level. The interpreter uses the low-
level abstractions of the application as data, but not the
real abstractions provided by the application. This forces
the language designer to be careful when implementing the
class for native function objects: it is expected that the
application-level call_arg is equally valid behaviour for the
native function objects.

The second kind of reflection can for example be seen
in Squeak [5], an open-source Smalltalk implementation.
Squeak is a highly reflective system allowing developers to
use any object as a class if the object follows a certain mem-
ory layout: the first slot must be a reference to the super-
class, the second slot must be a reference to a dictionary of
methods, and the third slot must contain an integer encoding
various properties of the class such as the size of instances.
Failing to correctly initialize one of these slots might cause
the VM to crash.

In both cases we encounter a violation of the encapsula-
tion of the respective objects. The duality in the represen-
tation causes problems that arise by not automatically forc-
ing conformity with both representations. Even worse, the
interpreter-level API of application-level objects is abused,
possibly even from the application-level, to go around the
encapsulation designed to protect objects from the outside
world.

3. ENFORCING ENCAPSULATION
To preserve encapsulation across the meta-barrier, i.e. be-

tween code living in the interpreter context and code living
in the application context, the interface between both types

1The code excerpt is taken from revision 65525 of
http://codespeak.net/svn/pypy/trunk/pypy/objspace/
descroperation.py, lines 74–81

of code has to be unified. Code from both contexts com-
municates through this unified interface. By providing a
common reflective interface, encapsulation only has to be
ensured at a single place. The language becomes reflective
only through the meta-object protocol of the interpreter.

As an example of a unified view across the meta-barrier,
we discuss our implementation of an object-oriented lan-
guage built on top of Scheme called SchemeTalk2. This
new language combines the syntax of Scheme with message
passing semantics of Smalltalk. Our prototype implemen-
tation uses closures to capture the state of objects. The
following code shows how a class is defined in SchemeTalk.

(define-class Person
:superclass Object
:instvars email
:methods
(setEmail! (arg) (self ’set-email! arg))
(getEmail () (self ’get-email)))

Sending a message to an object in SchemeTalk works by
executing the lambda representing the object with a symbol
identifying the method to execute and the arguments that
should be passed to the method.

> (define john (Person ’new))
; sets John’s email
> (john ’setEmail! "john@doe.com")
; retrieves the email
> (john ’getEmail)
"john@doe.com"

While our language has the same syntax as normal Scheme
code, it is important to notice that SchemeTalk is an object-
oriented system. The code written in terms of Scheme-
Talk belongs to the application context. All other types
of Scheme code conceptually live in the interpreter context.
The following is an example of Scheme code in the inter-
preter context:

(+ 39 2 1)

The interfaces provided by SchemeTalk objects are the
same as those provided by Scheme closures. Scheme clo-
sures are non-reflective thus the encapsulation of objects is
guaranteed. In languages like C that do not provide a fail-
safe encapsulation mechanism, we require a slightly different
approach for new structures. Rather than letting the host-
language ensure that no encapsulation can be broken, all
the code written in the host-language must follow a strict
discipline: from within an object only the object itself may
be accessed directly. All other accesses must go over the
provided abstractions.

Sending a message to an object in SchemeTalk results
in a lookup in the class hierarchy. Once a method object
is found, the system sends the message ’execute to the
method object, with the given arguments. The class of a
method is implemented using the same infrastructure as our
previous model class:

; Application context
(define-class Method

:superclass Object
:instvars interp-code
:methods

2The implementation along with documentation can be
downloaded from http://scg.unibe.ch/research/schemetalk.

22

http://codespeak.net/svn/pypy/trunk/pypy/objspace/descroperation.py
http://codespeak.net/svn/pypy/trunk/pypy/objspace/descroperation.py
http://scg.unibe.ch/research/schemetalk

(initialize (interp-code)
(self ’set-interp-code! interp-code))

(execute args
(apply (self ’get-interp-code) args)))

; Interpreter context
(define (create-object class layout)

(let ((instvars (create-instvars layout)))
(define (self msg . args)

(or (find-instvar instvars msg)
(let ((method (class ’lookup msg)))

(method ’execute args))))
self))

Even if self is an object of the execution engine itself, it is
defined using the concepts of the message send described in
the application context. Furthermore, the code that defines
the semantics for method execution itself depends on the
semantics of the method execution.

(a)

execute

execute
(b)

Application Method Interpreter Method

Figure 1: Method invocations. (a) If a language is
written in itself, at some point circular dependencies
are imminent. (b) Applying polymorphism to the
method invocation itself solves the problem.

As we explained in Section 2, in traditional systems this
circular dependency is broken by not directly relying on ob-
jects in the application context. Methods would not be real
application objects but rather specially tagged interpreter
objects. The interpreter then checks if the looked up method
is really an object internal to the interpreter, and if it is, the
interpreter natively executes its code. Reflective interpreters
would allow applications to insert custom types of methods
by falling back to normal message sends in the case that the
retrieved object was not an interpreter-level object.

This way of building a system is not object-oriented. In a
fully object-oriented system the different types of behaviour
would be decided based on the polymorphic behaviour of
the retrieved object. Instead the previously described way
of interpreting breaks the encapsulation of the object by
directly checking its runtime type.

To break the circular dependency in an object-oriented
fashion as shown in Figure 1, the VM must ensure that ob-
jects from the application context support the same interface
as objects from the interpretation context. This avoids the
need for the VM to rely on type information to know how
to execute code.

In Scheme we can easily build code in the interpreter con-
text which uses the same interface as SchemeTalk objects.
This concept is well-known as dispatch objects [1]. Dispatch-
objects introduce object-orientation to Scheme by adding
objects which directly understand a set of messages, i.e.
they do not rely on other objects for method invocation.

(define (method-class interp-code)
(letrec ((self (lambda (msg . args)

(case msg
((execute) (apply interp-code args))
(else

; Remember that Method is the class
; for methods written in SchemeTalk.
(let ((method (Method ’lookup msg)))

(method ’execute args)))))))
self))

Dispatch-objects as shown in the previous code allow the
interpreter to generate objects which directly understand a
very limited number of messages. In this example, methods
only understand execute directly, i.e. without any need
for further evaluation in the interpreter or application con-
text. In the alternative path, whenever the message is not
execute, the normal lookup pattern is taken. By relying on
dispatch objects we have successfully broken the circular de-
pendency circle while still allowing the objects to receive all
sorts of messages which are defined in the class. In effect we
have moved the test which the interpreter needs to decide
how to execute the code, from outside the method object to
the inside of the object itself.

In contrast to traditional reflective systems our implemen-
tation is safe by design. Since the interface of interpreter-
and application-level objects is unified, applications can di-
rectly communicate with the interpreter’s objects through
the same interface as other objects. This avoids duality
and related synchronization problems. Secondly, since ob-
jects never break the encapsulation of other objects, the
interpreter-level objects cannot accidentally read raw mem-
ory by making wrong assumptions about the objects it is
handling. Properly implemented encapsulation enforces the
interpreter to handle all objects safely.

4. RELATED WORK
Lorenz et al. also identified an encapsulation problem

related to reflection [6]. They demonstrate that Java appli-
cations often rely on interfaces as the sole source for meta-
information. This limits the reuse and makes it difficult
to re-target applications to use a different source of meta-
information. By providing pluggable reflection the actual
source of meta-information can be plugged in at compile- or
load-time. While they identify and solve the encapsulation
problem on the application-level, their approach does not
enforce the interpreter to follow the same strategy. As pre-
sented in our paper, we enforce a pluggable interpretation
strategy at application and interpretation level.

Bracha et al. argue that meta-level functionality should
be implemented separately from the base-level functionality,
using objects known as mirrors [3]. They identify three
design principles for reflection: encapsulation, stratification
and structural correspondence. Stratification means that the
meta-level functionality should be separated from the base
functionality and structural correspondence ensures that the
meta-level functionality corresponds to the structure of the
language they manipulate. With our approach there is no
need for stratification, as the complete system including the
interpretation layer is implemented in terms of encapsulated
entities.

Gybels et al. combine reflection and inter-language meta-
programming into inter-language reflection [4]. They argue
that an unification between interpreter-level representations

23

of the different languages is required. To unify the interfaces
between objects they propose to wrap the internal represen-
tations. This approach however does not enforce the inter-
language reflection to be safe. Any of the languages might
expose its own unsafe reflection to all languages, making all
languages involved unsafe.

Schärli et al. propose object-oriented encapsulation poli-
cies for dynamically typed languages [10]. The encapsula-
tion deficiency of a highly reflective system is fixed by assign-
ing access policies to objects, thus objects can be protected
from each other depending on the context they are used in.
Contrary to their approach, our system is built from the
ground up to support safe reflection, and not patched post-
mortem to turn an inherently insecure system safe.

Piumarta et al. propose a minimal message based object
model [8]. The only primitive operation is the bind opera-
tion, that searches in a cache for executable code. In case
of a cache miss, a method lookup at the application level
is performed and expected to return a pointer to executable
code. The system is bootstrapped by filling the caches with a
minimal set of methods. This gives a mutable object model
that permits the implementation of various lookup strate-
gies, however it forces the application layer to deal with low
level concepts such as executable code pointers and thus
breaks encapsulation completely.

5. CONCLUDING REMARKS
In this paper we have identified an encapsulation problem

between code running in application and interpreter level.
This limits the possible reuse of interpreter code. In our
presented solution we ensured encapsulation by unifying the
interface between objects from the interpreter and the ap-
plication context. We first built the system fully in terms
of itself to then break circular dependencies by introducing
encapsulation-preserving objects in the interpreter context
that are polymorph to the application’s objects.

While the implementation of SchemeTalk only demon-
strated the integration of methods into a language, the tech-
nique described in this paper should be applied on all levels
of any context-aware language. The decision on how to re-
spond to a changing context should be handled by the object
in question, and not by hardcoded choices made by the in-
terpreter.

Even though the current implementation is safe, we run
on top of a mostly non-reflective system making our perfor-
mance suffer. To gain performance we would have to bring
our system to the level of the host language. This can only
be done from within a language if it is reflective. To boot-
strap such an environment, the first incarnation has to be
geared towards the lowest system available, namely the ac-
tual hardware.

6. ACKNOWLEDGMENTS
We thank Camillo Bruni, Tudor Gı̂rba, Adrian Kuhn, Os-

car Nierstrasz and John Plaice for their feedback on this pa-
per. We gratefully acknowledge the financial support of the

Swiss National Science Foundation for the project “Bringing
Models Closer to Code” (SNF Project No. 200020-121594,
Oct. 2008 - Sept. 2010).

7. REFERENCES
[1] N. Adams and J. Rees. Object-oriented programming

in scheme. In Conference Record of the 1988 ACM
Conference on Lisp and Functional Programming,
pages 277–288, Aug. 1988.

[2] K. Auer. Reusability through self-encapsulation. In
Pattern languages of program design, pages 505–516.
ACM Press/Addison-Wesley Publishing Co., 1995.

[3] G. Bracha and D. Ungar. Mirrors: design principles
for meta-level facilities of object-oriented
programming languages. In Proceedings of the
International Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA’04), ACM SIGPLAN Notices, pages
331–344, New York, NY, USA, 2004. ACM Press.

[4] K. Gybels, R. Wuyts, S. Ducasse, and M. D’Hondt.
Inter-language reflection — a conceptual model and
its implementation. Journal of Computer Languages,
Systems and Structures, 32(2-3):109–124, July 2006.

[5] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the future: The story of Squeak, a
practical Smalltalk written in itself. In Proceedings of
the 12th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications (OOPSLA’97), pages 318–326. ACM
Press, Nov. 1997.

[6] D. H. Lorenz and J. Vlissides. Pluggable reflection:
decoupling meta-interface and implementation. In
ICSE ’03: Proceedings of the 25th International
Conference on Software Engineering, pages 3–13,
Washington, DC, USA, 2003. IEEE Computer Society.

[7] P. Maes. Concepts and experiments in computational
reflection. In Proceedings OOPSLA ’87, ACM
SIGPLAN Notices, volume 22, pages 147–155, Dec.
1987.

[8] I. Piumarta and A. Warth. Open reusable object
models. Technical report, Viewpoints Research
Institute, 2006. VPRI Research Note RN-2006-003-a.

[9] A. Rigo and S. Pedroni. PyPy’s approach to virtual
machine construction. In Proceedings of the 2006
conference on Dynamic languages symposium,
OOPSLA ’06: Companion to the 21st ACM
SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 944–953,
New York, NY, USA, 2006. ACM.

[10] N. Schärli, A. P. Black, and S. Ducasse.
Object-oriented encapsulation for dynamically typed
languages. In Proceedings of 18th International
Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’04), pages
130–149, Oct. 2004.

24

	Introduction
	The Encapsulation Problem
	Enforcing Encapsulation
	Related Work
	Concluding Remarks
	Acknowledgments
	References

