
The Practical Uses of TransLucid

John Plaice
School of Computer Science and Engineering

University of New South Wales
Sydney, NSW, 2052

Australia
plaice@cse.unsw.edu.au

Blanca Mancilla
School of Computer Science and Engineering

University of New South Wales
Sydney, NSW, 2052

Australia
mancilla@cse.unsw.edu.au

ABSTRACT
TransLucid is a declarative coördination language in which
all expressions vary according to an arbitrarily-dimensional
context. Using only the concepts of context change and of
context query, a wide variety of programming constructs are
demonstrated to be easily programmed in TransLucid. The
language can therefore be used in its own right or as a target
language for different paradigms.

Categories and Subject Descriptors
D.3.3 [Software]: Programming Languages—
Language Constructs and Features

General Terms
Languages

Keywords
Cartesian Programming, Lucid language, declarative pro-
gramming, multidimensional programming, context-aware
programming.

1. INTRODUCTION
In this article we show how the TransLucid multidimen-

sional programming language [5] can be used to solve a wide
variety of problems in a declarative manner. In TransLucid,
expressions vary in a multidimensional context, where any
ground value may play the rôle of a dimension. During the
evaluation of an expression, the context may be queried,
dimension by dimension, in order to adapt its behaviour to
the context. During evaluation of an expression, the context
may be changed as well.

We call the key structure in TransLucid a hyperdaton, an
arbitrary-dimensional infinite array, indexed by a multidi-
mensional context in the form of a dynamically generated
lazy tuples, i.e., sets of (dimension, value) pairs.

The denotational and operational semantics of TransLucid
have been presented in [5]. Extensions of the language to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASTA’09, August 24, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-707-3/09/08 ...$10.00.

support reactive, parallel and distributed programming are
presented in [4]. An approach to implementating TransLucid
on a multithreaded processor is given in [7]. The history
leading to the development of TransLucid, ultimately going
back to Wadge and Ashcroft’s Lucid language [2], can be
found in [6].

In this paper, we use a number of examples to demonstrate
how TransLucid can be used as a programming language
in its own right, as a coördination language, and as a tar-
get language for a variety of paradigms, potentially adding
context-awareness to these for free. The examples given are
simple recursive functions, context-aware constants and op-
erations, unlimited register machines, functional programs
and context-aware programs.

2. RECURSIVE FUNCTIONS
We begin the presentation of TransLucid using a simple,

commonly understood example: the recursive function. The
following program defines the Fibonacci, factorial and Ack-
ermann functions, and then makes three demands.

01 infixn "==" "operator==" 1;;

02 infixl "+" "operator+" 2;;

03 infixl "-" "operator-" 2;;

04 infixl "*" "operator*" 3;;

05 %%

06 fib = if #0 _==_ 0 then 1

07 elsif #0 _==_ 1 then 1

08 else fib@[0:#0-2] + fib@[0:#0-1]

09 fi;;

10 fact = if #0 _==_ 0 then 1

11 else #0 * fact@[0:#0-1]

12 fi;;

13 ack = if #0 _==_ 0 then #1+1

14 elsif #1 _==_ 0

15 then ack@[0:#0-1,1:1]

16 else ack@[0:#0-1,1:ack@[1:#1-1]]

17 fi;;

18 %%

19 fib@[0:4];;

20 fact@[0:4];;

21 ack@[0:3,1:4];;

The example consists of three parts, the header (01–04), the
equations (06–17) and the demands (19–21).

The header provides sufficient information so that the
equations and the demands can be properly parsed. The
header defines four operators, ==, +, - and *. Should one
of these operators be recognised by the parser, the latter

13

maps the operator name to a function name. The function
name is then used to find a function defined in the under-
lying host language (currently C++). Each of the header
lines also designates the associativity and precedence of the
operators.

TransLucid has four ordinary builtin types: Boolean, in-
teger of arbitrary precision, Unicode character and Unicode
string. These can be parsed and printed without taking the
context into account. As a result, almost any Unicode char-
acter can be used to create operators. Single-character oper-
ators can be used directly in expressions; multiple-character
operators must be placed inside pairs of underscores, as
in _==_.

In the expressions, the # operator is used to query the
current context; for example, on line 06, subexpression #0

means the current value of dimension 0. As for the @ opera-
tor, it is used to change the current context; for example, on
line 08, subexpression fib@[0:#0-2] means to recurse and
reëvaluate fib having changed the context by replacing the
current value for dimension 0 by decrementing it by 2.

Context changes are relative, meaning they only change
the values of dimensions that are explicitly mentioned. For
example, in line 16, subexpression ack@[1:#1-1] changes
the setting for dimension 1, but does not change the setting
for dimension 0, or any other should there be one.

Runnning the above program yields the following results.

5 ;;

24 ;;

125 ;;

3. CONTEXT-DEPENDENT CONSTANTS
TransLucid has been designed so that externally defined

types can be used as atomic types in TransLucid. For each
type, there is a parse function, which transforms a string
into an object of that type, and a print function, which
generates a string from an object of that type. Of course,
because TransLucid is a context-aware language, at every
level, even the parsing and printing of constants is context-
dependent. Therefore, for each data type, there may be
predefined dimensions of variance.

Below, we show some of the possibilities that can be done
with the parsing and printing of large numbers, of Système
International (SI) units, and of French verbs.

01 library "si";;

02 library "verb";;

03 %% %%

04 1000000000000000000000000000000000 @

05 [outintmp:true, outtext:true,

06 outeunames:true] ;;

07 si<Hz> @ [instyle:"symbol", outstyle:"name"];;

08 si<newton> @

09 [instyle:"name", outstyle:"basicunits"];;

10 si<electric capacitance> @

11 [instyle:"quantity", outstyle:"name"];;

12 verb<envoyer> @

13 [outmode:"indicative", outtense:"future",

14 outperson:"1s"];;

15 verb<assiègeai> @

16 [inmode:"indicative", intense:"past",

17 inperson:"1s"];;

Lines 04–06 use three predefined dimensions relevant for
printing integers: outintmp means to use the sophisticated

printer, outtext means to print the number textually, and
outeunames means to use the long scale for printing num-
bers. The result for that demand is:

intmp<one trilliard> ;;

Lines 07–11 involve the type si, imported using line 01,
used for manipulating SI units. That library also defines
dimensions instyle and outstyle. The results of the de-
mands are:

si<hertz> ;;

si<m.kg.s-2> ;;

si<farad> ;;

Lines 12–17 involve the type verb, imported using line 02,
used for conjugating French verbs. That library defines di-
mensions inmode, intense, inperson, outmode, outtense

and outperson. The first demand conjugates an infinitive
and the second demand computes the infinitive. Here are
the results:

verb<enverrai> ;;

verb<assiéger> ;;

In most situations, the internal representation will have
a canonical form. This is certainly the case for the above
example. The integers are held as GNU MP integers, the
SI units are held as 7-tuples of integers (m, kg, s, A, K,
mol, cd) and the verbs are held in their infinitive form. How-
ever, having a canonical representation is by no means nec-
essary, and may even be impossible.

4. TURING COMPLETENESS
Given that TransLucid can be used to write recursive

programs, it is clear that it is Turing-complete. It turns
out that TransLucid can be viewed as a declarative form
of the well-known model of computation of unlimited regis-
ter machines (URM) [3], also known as random access ma-
chines (RAM).

An unlimited register machine contains an infinite set of
registers, called R1, R2, . . . , Rn, etc. A program running on
this machine is a finite sequence of instructions I1, I2, . . . ,
Im, where the instructions may be of the form:

• Z(i): Set register Ri to 0, next instruction.

• S(i): Add 1 to register Ri, next instruction.

• T(i, j): Copy register j into register i, next instruction.

• J(i, j, k): If registers i and j are equal, proceed to in-
struction k, otherwise proceed to the next instruction.

The way a URM program works is that if there are n
input values, they are placed in registers R1 through Rn, the
program is then started with instruction 1, and the program
will stop the instant that the next instruction number is
greater than m. The answer is left in register R1.

Given a URM program P = (I1, . . . , Im), it can be easily
translated into TransLucid, using a single variable, say X,
defined recursively. The idea is that dimension 0 will be
used to keep track of the URM instruction counter, while
dimension j, j ≥ 1, is used to keep track of register Rj .

X @ [0 : i] = T (Ip), p = 1..m

X = #1

14

where each T (Ip) means the appropriate translation of in-
struction Ip:

T
`
Z(i)

´
= X @ [0 : #0 + 1, i : 0]

T
`
S(i)

´
= X @ [0 : #0 + 1, i : #i+ 1]

T
`
T(i, j)

´
= X @ [0 : #0 + 1, i : #j]

T
`
J(i, j, k)

´
= if #i = #j

then X @ [0 : k]

else X @ [0 : #0 + 1] fi

If the input consists of values (i1, . . . , in), then the initial
demand is:

X @ [0 : 1, 1 : i1, . . . , n : in]

For example, the following program will, assuming a ≥ b,
R1 = a and R2 = b, calculate a− b:
1: J(1,2,5)

2: S(2)

3: S(3)

4: J(1,1,1)

5: T(3,1)

Register R2 is incremented up to the value held in regis-
ter R1, namely a. In parallel, R3 is incremented up to a− b.
Once registers R1 and R2 are equal, the value in register R3

is placed in register R1 and the program halts. Note that
instruction 4, J(1,1,1), is an unconditional branch to in-
struction 1, since register R1 is always equal to itself.

The TransLucid solution uses context-dependent defini-
tions:

01 infixn "==" "operator==" 1;;

02 infixl "+" "operator+" 2;;

03 %%

04 sub @ [0:1] = if #1 _==_ #2 then sub @ [0:5]

05 else sub @ [0:#0+1] fi;;

06 sub @ [0:2] = sub @ [2:#2+1, 0:#0+1];;

07 sub @ [0:3] = sub @ [3:#3+1, 0:#0+1];;

08 sub @ [0:4] = if #1 _==_ #1 then sub @ [0:1]

09 else sub @ [0:#0+1] fi;;

10 sub @ [0:5] = sub @ [1:#3, 0:#0+1];;

11 sub = #1

12 %%

13 sub @ [0:1, 1:4, 2:3] ;;

The result is below:

1 ;;

5. FUNCTIONAL ABSTRACTION
AND WHERE CLAUSES

It is common practice in all programming languages to
have structuring. To enhance structuring in TransLucid,
non-recursive functions can be transparently added since one
only needs variable substitution; recursive functions are han-
dled in the next section. In TransLucid, we implement the
indexed where clause, first used in Indexical Lucid [1]:

E

where

index d1, ..., dn;

x1 = E1;

...

xn = En;

end where;

The TransLucid indexed where clause is not primitive.
Rather, it is implemented by translating it into a series of
context-dependent definitions that suppose an indexing of
the different where clauses. Suppose that clause w appears
at nesting level m, i.e., there are m − 1 surrounding where
clauses. Then we will need m dimensions, w1 to wm, to keep
track of all of the levels of definitions. Then the contents of
the above clause can be rewritten as:

x1 @ [wi = ki]i=1..m = T (E1, 1 : `)

. . .

x1 @ [wi = ki]i=1..m = T (En, n : `)

where T (E, `) does the appropriate translation. As for the
demand, if ` = 〈k1, . . . , km〉, it is translated to:

T (E, `) @ [wm : km]

The internal dimensions are not visible outside the parenthe-
ses, nor are the definitions of x1 through xn. The definitions
in all of the enclosing where clauses are visible, but with
lower: priority than the current ones.

6. FUNCTIONAL PROGRAMMING
In the final section of Lucid, the Dataflow Programming

Language [9], Wadge and Ashcroft explained that the addi-
tion of functions to Lucid was problematic, because Lucid
objects are infinite. One would like to apply higher-order
functions to infinite objects, to build infinite objects contain-
ing higher-order functions, and even to build infinite objects
containing higher-order functions that can be applied to in-
finite objects.

With TransLucid, it is possible to provide a general so-
lution to this problem. It is based on the idea that an
n-argument function can be understood as an (at least)
n-dimensional hyperdaton, and that a function call corre-
sponds to looking up the value of that hyperdaton in the
appropriate context. This idea clearly works simply for first-
order functions, but how can it be extended to deal with
higher-order functions and partially applied functions?

Higher-order functions must be able to manipulate other
functions as if they are single values. To do this in TransLu-
cid, there is a single hyperdaton called F, which varies in the
fun dimension. By changing the value of the fun dimension,
we change the function.

For partially applied functions, we need to explicitly pass
around tuples encapsulating the partially applied functions.
To do this, we need to introduce two new dimensions: args

is the number of arguments in the function, while count is
the number of accumulated arguments.

For example, in

add 3 4

where

add x y = x+y ;;

end where;;

we build successively:

[fun:"add", args:2, count:0]

[fun:"add", args:2, count:1, 1:3]

[fun:"add", args:2, count:2, 1:3, 2:4]

and then a lookup into F takes place.
The general solution is to replace every function call of

the form E1 E2 with Ap(E1,E2), defined below:

15

Ap(E1,E2) =

if a+1 _==_ c then F @ ctxt else ctxt fi

where

a = #args @ E1;;

b = a + 1;;

c = #count @ E1;;

ctxt = E1 . [args:b, b:E2];;

end where;;

We give an example from Panagiotis Rondogiannis [8]:

f 8

where

f x = twice (add x) x

twice g y = g (g y)

add a b = a + b

end where;

here translated into TransLucid:

Ap([fun:"f", args:1, count:0], 8)

where

F @ [fun:"f"] =

Ap(Ap([fun:"twice", args:2, count:0],

Ap([fun:"add", args:2, count:0],

#1)),

#1);

F @ [fun:"twice"] = Ap(#2, Ap(g, #1));

F @ [fun:"add"] = #2 + #1

end where;

We can see from this process that identifiers themselves are
not truly necessary. We could have a single identifier, say H,
and then all others would simply be coded as variance of H
in the id dimension.

7. HYPERDATONS OF FUNCTIONS
The very last example of the Lucid book posited that

one could build streams of functions, using lambda expres-
sions. Up to now, no language had been able to do this until
TransLucid. We even go one level further, by allowing en-
tire hyperdatons of functions, i.e., infinite multidimensional
families of functions. We simply index all of the occurrences
of λ. For example,

01 dimension "d";;

02 %%

03 pow = if #d _==_ 0 then \x : x

04 else \x : x * (pow@[d:#d-1])(x) fi;

05 odd = if #1 _==_ 0 then 1

05 else odd@[d:#d-1] + 2 fi;

06 %%

07 (pow@[d:4])(odd@[d:3]);;

would yield the result 75 = 16807.

8. CONTEXT-AWARE PROGRAMMING
What is commonly called “context-aware programming”

corresponds to the use of an “external context” to which a
program must adapt as the former changes. In TransLucid,
the “external context” is simply a TransLucid context, and
the“external context changes”means that the corresponding
TransLucid context varies according to a dimension with
physical interpretation, say time. Using the synchronous
hypothesis, all variables vary according to that dimension.

Depending on the deployment environment of a TransLu-
cid system, the exact mechanism for reading the “external
context” will vary. However, whatever the mechanism, the
semantics does not change.

In the following example, the system of equations defines
a new external context, called contextout, based on an ex-
ternal context called contextin. The variable contextout

is the same as contextin, except for dimension x, which
doubles x from the previous instant, except for the first.

01 %%

02 contextin = external ;;

03 contextout = contextin @

04 if #time == 0 then []

05 else [x : (#x * 2) @ [time : #time-1]] fi;;

06 %%

07 contextout ;;

The output contextout is a time-varying entity, so the above
program defines a reactive system.

Since TransLucid is, from the core, a language for ma-
nipulating context, adapting TransLucid for “context-aware
programming” is a simple issue.

9. CONCLUSION
The examples of TransLucid given in this article amply

demonstrate the versatility of the language, both as host
language and as target language for other paradigms. The
concept of arbitrarily-dimensional context can be used to en-
code many different forms of computing. Current research is
focused on the structuring of data, on developing support for
reactive and distributed programing, and for the declarative
handling of side-effects.

10. REFERENCES
[1] E. A. Ashcroft, A. A. Faustini, R. Jagannathan, and

W. W. Wadge. Multidimensional Programming. Oxford
University Press, New York, 1995.

[2] E. A. Ashcroft and W. W. Wadge. Lucid, A
Nonprocedural Language with Iteration.
Communications of the ACM, 20(7):519–526, July 1977.

[3] N. J. Cutland. Computability: An Introduction to
Recursive Function Theory. Cambridge University
Press, 1980.

[4] B. Mancilla and J. Plaice. Declarative multithreaded
programming. In 33rd IEEE International Computer
Software and Applications Conference, 2009. In press.

[5] J. Plaice and B. Mancilla. Cartesian programming: The
TransLucid programming language. In 33rd IEEE
International Computer Software and Applications
Conference, 2009. In press.

[6] J. Plaice, B. Mancilla, and G. Ditu. From Lucid to
TransLucid: Iteration, dataflow, intensional and
Cartesian programming. Mathematics in Computer
Science, 2(1):63–84, 2008.

[7] T. Rahilly and J. Plaice. A multithreaded
implementation for TransLucid. In 32nd Annual IEEE

International Computer Software and Applications
Conference, pages 1272–1277, 2008.

[8] P. Rondogiannis. Personal communication, 2005.

[9] W. W. Wadge and E. A. Ashcroft. Lucid, the Dataflow
Programming Language. Academic Press, London, 1985.

16

