
Towards Context-Aware Components

Antoine Beugnard † Sophie Chabridon ‡ Denis Conan ‡

Chantal Taconet ‡ Fabien Dagnat † Eveline Kaboré †

{Antoine.Beugnard,Sophie.Chabridon,Denis.Conan,Chantal.Taconet,Fabien.Dagnat,Eveline.Kabore}
@institut-telecom.fr

†Institut Télécom, Télécom Bretagne, Brest, France
‡Institut Télécom, Télécom & Management SudParis / UMR CNRS SAMOVAR, Évry, France

ABSTRACT
Making component self-adaptable requires observation abi-
lities. Observation features are usually intricated within the
functional code. We propose to consider observation as an
aspect. The solution we present in this paper allows an
explicit specification of which observation data are required
by a business component and which observation data this
component offers to the other entities of the system. We
illustrate the advantages of this separation of concerns for a
self-adaptable web server.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Modules and in-
terfaces; D.2.11 [Software architectures]: Domain-specific
architectures

General Terms
Design, Experimentation

1. INTRODUCTION
Software components seem to be a promising way of buil-

ding software thanks to their assembling features. Many
component models have been proposed from academic ones
(e.g., Fractal, OpenCOM) to already widely used industrial
ones (e.g., CCM, J2EE, .NET, OSGi, SCA). All these mo-
dels propose a quite similar architecture: offered and re-
quired ports, configuration attributes and control ports.

In parallel to this architectural branch of progress, the
software engineering field proposes another way of expres-
sing modularity thanks to aspects (or more generally, pre-
occupations).

Some works have already tried to merge both approaches:
components and aspects: FAC [14], AspectCCM [7], FuseJ
configuration language [17].

We propose in this article to tackle a specific preoccu-
pation which is central to adaptation: observation. We

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASTA’09, August 24, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-707-3/09/08 ...$10.00.

consider the ability to observe its context as a specific as-
pect that can be isolated from the core functionality of any
component. In addition, we propose a development process
based on model engineering to cope with this aspect: The
observation is specified thanks to a model (that conforms to
a meta-model of observation) and is integrated into the com-
ponent with a model transformation that generates a com-
ponent with all the specified features of observation. The
observations are reusable and can be merged with other com-
ponents. We have experimented this approach in a preexis-
ting component architecture in order to improve its adaptive
features thanks to observations. This shows how simple it
is to separate the core functionality of the component from
its observation abilities.

The remainder of this paper is organised as follows. Sec-
tion 2 motivates the promotion of an observation aspect.
Section 3 presents the component model integrating the ob-
servation contracts which are more thoroughly defined in
Section 4 and experimented in Section 5. Finally, Sections 6
and 7 discuss the contribution with regard to related work
and conclude the paper respectively.

2. OBSERVATION ASPECT
It is now widely accepted that a software component is

functionally defined by the services it offers and requires.
When such a component needs to be adaptable, all models
of adaptability ([1, 5, 6, 10, 11, 16, 19]) are based on a 4-
steps process [12]: 1) observe the context; 2) analyse the
context to decide whether to adapt (applying a strategy);
3) plan the change (that may be predetermined); and 4)
execute the reconfiguration plan.

In this article, we focus on the first step. We propose a
process that makes functional aspects of components inde-
pendent from observational ones. Current component mo-
dels do no separate the functional interface from the obser-
vation one, even if it could be a good practice. Note that
the relation is asymmetric since observations may rely on
the functional services of the component. This separation of
concerns gives the opportunity to change observations with-
out modifying the core part of components. The context-
aware component is then built from these models by a kind
of transformation that weaves both descriptions and pro-
poses an implementation of the observation infrastructure.

We propose to study the following scenario. A web server
has been developed without any adaptation consideration.
This server is deployed on a small old-fashioned reused com-
puter. Its administrator observes that the web server suf-
fers denial of service and decides to detect high rates of in-

1

complete attempted connections so that the server applies
counter-measures such as blocking requests from incrimi-
nated IP domains. The first possible solution is to make
a patch to the server source code. But, the administrator
also notices that the server does not scale well when the
CPU load exceeds some threshold. Wondering how many
different observations may be of interest and would neces-
sitate to modify the server source code, the administrator
freezes and eventually lets the server unmodified.

We propose to solve this problem with three elements: a
declarative way of specifying observations of interest; a kind
of weaver to integrate the observation code into the core ap-
plication; and a set of predefined components dedicated to
observation. The first two elements constitute the contribu-
tions presented in this paper while the last one relies on the
COSMOS [8, 15] context management framework.

3. CONTEXT-AWARE COMPONENT
In this research work, we have chosen Fractal [3] as the

demonstrating component model. Fractal is a general-
purpose component model of the OW2 Consortium1. This is
a hierarchical and reflexive component model with sharing.
As we will see, we use Fractal for its flexibility and its
extensibility: one of the main features of this component
model is that it is dynamic and reflexive.

Figure 1 illustrates the different entities in a typical Frac-
tal component. The thick black box denotes the controller
part of a component, while the interior of the box corre-
sponds to the content part of the component. T symbols
protruding from the box are interfaces. Interfaces appearing
on the left and right sides depict server and client interfaces,
respectively. Interfaces appearing at the top of the box rep-
resent reflexive control (extra-functional) interfaces such as
the life-cycle controller, the binding controller, the attribute
controller or the content controller interfaces.

Controllers (lifecycle,connection...)

Observation contracts

COSMOS context nodes

Provide
observation data

Require
observation data

Offered

functional

interfaces

Required

interfaces

functional

Figure 1: Self-adaptable component with observa-
tion contracts

We complement the Fractal component model described
so far with observation contracts which appear at the bottom
of the component as drawn in Figure 1. Observation con-
tracts get translated into extra-functional interfaces. Con-
trary to control interfaces at the top that are exclusively
server interfaces, the interfaces we add can be client or server
interfaces connected to the infrastructure. In our case, the

1http://fractal.ow2.org

infrastructure is the COSMOS context manager which is it-
self implemented using Fractal.

COSMOS2 is a component-based framework for managing
context information in ubiquitous environments for context-
aware applications. In particular, COSMOS identifies the
contextual situations to which a context-aware application is
expected to react. These situations are modelled as context
policies that are hierarchically decomposed into fine-grained
units called context nodes. A context node is a context infor-
mation modelled as a Fractal component. The relation-
ships between context nodes are sharing and encapsulation.
The sharing of a context node —and, by implication, of
a partial or complete hierarchy— corresponds to the shar-
ing of a part of or a whole context policy. Context nodes
at a hierarchy’s leaves (the bottom-most elements, with no
descendants) encapsulate raw context data obtained from
context providers that in this paper are either legacy frame-
work entities or other application components. Communi-
cation between context nodes through the hierarchy may be
bottom-up or top-down. The former case corresponds to no-
tifications sent by context nodes to their parents, whereas
the latter case corresponds to observations triggered by a
parent node.

On the one hand, observation contracts translate into
client interfaces to express the fact that the component i)
sends a notification of some of its observation data to the
context manager or ii) asks for an observation of the con-
text. On the other hand, server interfaces correspond i) to
the receipt of a notification from the context manager or ii)
to the answering of an observation of its observation data by
the context manager. For a better separation of concerns,
the context manager mediates all the exchanges of obser-
vation data between application components, that is we do
not envisage that observation contract interfaces are directly
connected.

4. OBSERVATION CONTRACTS
Since we target context-aware applications, that is appli-

cations that are designed and implemented with context-
aware business capabilities, we propose that designers spec-
ify observation contracts in models (à la UML). In the case
of our Web server example, designers specify in UML class
diagrams that the Web server requires the“CPU load”context
data and provides the denial-of-service data containing the
list of IP domains from which too numerous requests are
issued. Either an administrator’s console or an adaptation
service collects these denial-of-service data from the Web
servers they monitor through the context manager. In the
former case, the administrator can then manually intervene.
In the latter case, the adaptation service analyses the obser-
vation data, then plan counter-measures and apply them :
this MAPE-K autonomic control loop defines an autonomic
system of Web servers [12].

Part3 of the meta-model which allows a component to de-
fine its observation contracts is presented in Figure 2. Being
a primitive or composite component, a ContextAwareSystem
defines its ObservationContracts through which it is linked
to contextual Entities of the observable world via Observ-
ables either required or provided. An example of Entity in

2http://picoforge.int-evry.fr/projects/svn/cosmos
3Due to space limitation, the complete meta-model is not
presented in this paper.

2

name: String

Entity

entities

observables
Observable

observable

InterpretedObservable

ContextAwareSystem

EntityRelation

upperCardinality: Integer
lowerCardinality: Integer
name: String

name: String

ObservationContract

name: String

derivedFrom

0..*

0..*

0..*
entityRelations

linkedEntities
0..*

0..*

0..*

0..*1..1

Figure 2: Observation Contract Meta-Model

the Web server scenario is the local Computer. The pres-
ence of the Entity concept expresses the fact that we need
to state the origin of the observation data. For instance, as
depicted in Figure 3, the Web server of the scenario requires
the CPULoad of its computer, not from a remote computer.
Note also that since the Web server provides observation
data it appears in the model of Figure 3 as an observable
Entity. In addition, observable Entities are linked thanks to
EntityRelationships and define Observables that can be simple
or aggregated (InterpretableObservable). Therefore, observe
the EntityRelationship between WebServer and Computer in
Figure 3.

An ObservationContract (not detailed in this simplified
model) describes how a component and an observable are
associated. Firstly, it defines if the observation data are
provided or required by the component. In case of required
observation data, it also defines the mode: observation or
notification. For a notification, it defines what event trig-
gers this notification (e.g., for the CPUload Observable, the
notification may be triggered periodically, or if the CPUload
exceeds a given threshold).

<<EntityRelation>>

<<Entity>>

0..*

0..*

WebClient

<<Observable>>

Contract>>
<<Observation

0..*

0..*

Computer
LoadOC

Forbiden

NetworkOC

Server

LoadOC

Client

ActivityOC

Client

NetworkOC

AccessRate

<<Observable>>

System>>
<<ContextAware

CA System Entities Observables ObsContracts

WebServer

Computer

WebServer

Component

AccessRate

IPAddress

 CPUload

ForbidenIPNetworks

<<Observable>>

<<Observable>>

<<Observable>>

<<Entity>>

<<Entity>>

<<EntityRelation>>

Figure 3: Web Server Observation Model

Furthermore, the contract defines the QoC (Quality of
Context) characteristics required for the observations. In-
deed, since context-aware applications are highly dependent
upon context information, a precise knowledge of its QoC is
required. Meta-information can therefore be associated to
observations defining their QoC. In our work, we focus on
some generic QoC parameters which are used in most appli-
cations [4], such as precision (gives bounds to better mirror

reality), correctness (probability there exist unintentional in-
ternal errors), resolution (granularity), up-to-dateness (age
and lifetime correlation) and trust-worthiness (how much
confidence can be put in a context source). This part of our
work is out of the scope of this article.

5. EXPERIMENTATION
We have experimented this separation of preoccupations

in the Fractal implementation of a Web server called Co-
manche 4. As shown in Figure 3, we have specified the fact
that we were interested in the observation of the used CPU
and the access rate (other observables have not been used).

We have developed a set of models and model transfor-
mations (in the Kermeta language [13]) that use the UML
models describing the business functionalities of the Web
server and the context-awareness model as depicted in Fi-
gure 3. We have then generated a Fractal ADL description
of the system. The resulting description is directly usable
to deploy the Web server with its observation abilities.

Without any observation integration, the Web server does
not trace any observation. In a first evolution, we introduce
a first observation, the used CPU for instance, and rege-
nerate the component architecture. The system now traces
the percent of CPU used. In a second evolution, we add
the access rate observation and regenerate the whole system
automatically. The system eventually traces both the used
CPU and the access rate.

This scenario shows how explicit observations can be weaved
and reused with the component thanks to model transfor-
mations. The study needs to be generalized since only two
observables have been modelled and tested.

6. RELATED WORKS
To our best knowledge, none of the current component

models propose an explicit model of observation. This pre-
vents composition, reuse and some verification of observa-
tion contracts. The usual approach is to merge observation
aspects with the business part of the system.

In the SAFRAN approach [10], the observation is mixed
with the adaptation controller and cannot therefore be reused.
If two controllers require the same observation, they both
have to describe it. The context-aware extension of CORBA
IDL called CA-IDL (context-aware IDL) proposed in the
RCSM middleware [18] allows the definition of observation
contracts comparable to our proposal. However, it is restric-
ted to a set of predefined observables.

The CORTEX project [2] has defined the concept of sen-
tient objects. A sentient object is an entity that collects con-
text information, processes it and produces software events.
Although sentient objects enable the development of context-
aware applications, they do not envision observation as an
extra-functionality and are based on software objects rather
than components limiting the ease of composition.

OSA [9] relies on the Fractal component model to hide the
component observation in the controller part of the compo-
nents. This work is the closest to our proposition in that
the mechanisms to get observation information correspond
to aspect weawing. However, OSA can only express the fact
that observation data are provided by the component, not
that they are required by the component, that is in only one
direction, limiting reusability in other application domains.

4http://fractal.ow2.org/tutorials/comanche.html

3

In addition, these data are only provided by observation:
the notification mode is not available.

7. CONCLUSION AND PERSPECTIVES
We have considered observations as a first-class aspect

that can be separately specified from the functional part
of components. This approach has been successfully experi-
mented in a Web-server application. We claim that observa-
tions can be weaved at design-time with components, lead-
ing to the constitution of separate repositories for business
components and observations whose elements can be com-
bined to build context-aware applications that both observe
and are observable, the first step towards truly adaptable
systems.

For the time being, the observation contracts are described
with a UML-like model, but we believe that a domain spe-
cific language could be defined in order to improve the usa-
bility and the checking of consistency.

In the short term, we intend to increase the number of
observables that can be weaved in the Fractal compo-
nent model. Beyond, we would like to explore remote (dis-
tributed) observation contracts and their use for the adap-
tation of context-aware applications.

8. REFERENCES
[1] Dhouha Ayed and Yolande Berbers. Dynamic

adaptation of CORBA component-based applications.
In Proceedings of the 2007 ACM symposium on
Applied Computing (SAC’07), pages 580–585. ACM
Press, 2007.

[2] G. Biegel and V. Cahill. A framework for developing
mobile, context–aware applications. In Conference on
Pervasive Computing and Communications PerCom
2004, pages 361–365, Orlando, USA, March 2004.

[3] É. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. The Fractal Component Model
and Its Support in Java. Software—Practice and
Experience, Special issue on Experiences with
Auto-adaptive and Reconfigurable Systems,
36(11):1257–1284, September 2006.

[4] T. Buchholz, A. Kupper, and M. Schiffers. Quality of
context information: What it is and why we need it.
In 10th International Workshop of the HP OpenView
University Association, Geneva, Switzerland, July
2003.

[5] Jérémy Buisson, Françoise André, and Jean-Louis
Pazat. A framework for dynamic adaptation of
parallel components. In Parallel Computing
Conference (ParCo), 2005.

[6] Djalel Chefrour. Developing component-based
adaptive applications in mobile environments. In SAC
’05: Proceedings of the 2005 ACM symposium on
Applied computing, pages 1146–1150, Santa Fe, New
Mexico, USA.

[7] Pedro J. Clemente, Juan Hernadez, Juan M. Murillo,
Miguel A. Perez, and Fernado Sanchez.
Component-Based Software Development: Case
Studies, chapter Chapter 5 : Component-based
System Design and Composition: An Aspect-oriented
Approach, pages 109–128. World Scientific, 2004.

[8] D. Conan, R. Rouvoy, and L. Seinturier. Scalable
Processing of Context Information with COSMOS. In

J. Indulska and K. Raymonds, editors, Proc. 6th IFIP
WG 6.1 International Conference on Distributed
Applications and Interoperable Systems, volume 4531
of Lecture Notes in Computer Science, pages 210–224,
Paphos, Cyprus, June 2007. Springer-Verlag.

[9] Olivier Dalle. Component-based discrete event
simulation using the fractal component model. In AI,
Simulation and Planning in High Autonomy Systems
(AIS) - Conceptual Modeling and Simulation (CMS)
Joint Conference, pages 213–218, Buenos Aires, AR,
February 2007.

[10] Pierre-Charles David and Thomas Ledoux. Towards a
framework for self-adaptive component-based
applications. In Jean-Bernard Stefani, Isabelle
Demeure, and Daniel Hagimont, editors, Proceedings
of Distributed Applications and Interoperable Systems
2003 DAIS2003), volume 2893 of Lecture Notes in
Computer Science, pages 1–14, Paris, 2003. Federated
Conferences, Springer-Verlag.

[11] M. Oussalah Gautier Bastide, A.-D. Seriai.
Self-adaptation of software component structures in
ubiquitous environments. In ICPS’08: Proceedings of
the International Conference on Pervasive Services,
Juillet 2008.

[12] J.O. Kephart and D.M. Chess. The Vision of
Autonomic Computing. IEEE Computer, 36(1),
January 2003.

[13] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving
executability into object-oriented meta-languages. In
S. Kent L. Briand, editor, MODELS/UML’2005,
pages 264–278, Montego Bay, Jamaica, 2005. Springer.

[14] Nicolas Pessemier, Lionel Seinturier, Thierry Coupaye,
and Laurence Duchien. A model for developing
component-based and aspect-oriented systems. In 5th
International Symposium on Software Composition,
Vienna, Austria, 2006.

[15] R. Rouvoy, D. Conan, and L. Seinturier. Software
Architecture Patterns for a Context Processing
Middleware Framework. IEEE Distributed Systems
Online, 9(6), June 2008.

[16] Maria-Teresa Segarra and Françoise André. A
framework for dynamic adaptation in wireless
environments. In TOOLS ’00: Proceedings of the
Technology of Object-Oriented Languages and Systems
(TOOLS 33), page 336, Washington, DC, USA, 2000.
IEEE Computer Society.

[17] Davy Suvée, Bruno De Fraine, and Wim
Vanderperren. Component-Based Software
Development, volume 4063 of Lecture Notes in
Computer Science, chapter A Symmetric and Unified
Approach Towards Combining Aspect-Oriented and
Component-Based Software Development, pages
114–122. Springer Berlin / Heidelberg, 2006.

[18] S.S. Yau, F. Karim, Yu Wang, Bin Wang, and S.K.S
Gupta. Reconfigurable context-sensitive middleware
for pervasive computing. 1(3):33–40, June 2002.

[19] Ji Zhang and Betty H. C. Cheng. Model-based
development of dynamically adaptive software. In
IEEE International Conference on Software
Engineering (ICSE06), Shanghai, China, May 2006.

4

