
Context Modeling and Constraints Binding in Web Service
Business Processes

Kosala Yapa Bandara
Dublin City University

Dublin 9, Ireland
kyapa@computing.dcu.ie

MingXue Wang
Dublin City University

Dublin 9, Ireland
mwang@computing.dcu.ie

Claus Pahl
Dublin City University

Dublin 9, Ireland
cpahl@computing.dcu.ie

ABSTRACT
Context awareness is a principle used in pervasive services
applications to enhance their flexibility and adaptability to
changing conditions and dynamic environments. Ontologies
provide a suitable framework for context modeling and rea-
soning. We develop a context model for executable business
processes – captured as an ontology for the Web services do-
main. A Web service description is attached to a service con-
text profile, which is bound to the context ontology. Context
instances can be generated dynamically at services runtime
and are bound to context constraint services. Constraint
services facilitate setting up both constraint properties and
constraint checkers, which determine the dynamic validity
of context instances. Data collectors focus on capturing
context instances. Runtime integration of both constraint
services and data collectors permit the business process to
achieve dynamic business goals.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures, Languages

General Terms
Design

Keywords
Web Service, Semantics, Context, Ontology, Constraints

1. INTRODUCTION
Web services provide a platform for bridging heteroge-

neous applications. The Web services platform has the ca-
pability of enabling high-level processes referred to as com-
posite Web services. Composition addresses the situation in
which a user request cannot be satisfied by a single Web ser-
vice, whereas a composite Web service consisting of a combi-
nation of Web services could satisfy this request. The Busi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASTA’09, August 24, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-707-3/09/08 ...$10.00.

ness Process Execution Language for Web Services (WS-
BPEL or BPEL for short) is the de facto standard for ser-
vices composition. Processes are executed by a BPEL en-
gine, which creates a process instance when an invocation
activity (receive) is triggered and terminates the instance
after completing the corresponding reply activity. The pro-
cess instance interacts with other services (partners) through
further invocation activities.

Context has been investigated in many Web services re-
search projects [5, 11, 10, 9]. Context awareness is a major
enabler in ubiquitous computing and offers promising ways
to adapt and personalize applications [4]. The main objec-
tive of our work is to facilitate the development and deploy-
ment of context-determined dynamic Web services applica-
tions. Standard Web service descriptions lack context infor-
mation support. However, in context-determined dynamic
Web services applications, runtime context constraints bind-
ing needs to be integrated [2].

We can identify three central benefits of context constraint
modeling and dynamic integration in business processes. Fir-
stly, context and constraint services binding support a busi-
ness process to achieve dynamic business goals. Secondly,
Context ontology works as an information integration plat-
form enabling integration of various constraints such as tech-
nical constraints and business constraints. Thirdly, enhanced
modeling of constraints and reasoning could be achieved
through the context ontology.

In this paper, Section 2 presents our ontology-based con-
text constraints framework. Then we discuss in Section 3
our Web services context ontology, illustrating context cat-
egories. In Section 4, we discuss the operationalisation of
context constraints. Related work is discussed in Section 5
and some conclusions are presented in Section 6.

2. ONTOLOGY-BASED CONTEXT FRAME-
WORK FOR SERVICE PROCESSES

While some authors have investigated comprehensive ser-
vice and process ontologies [5, 11, 10], our aim is the investi-
gation of context aspects that are relevant for the execution
and in particular the dynamic composition and monitoring
of processes. Therefore, the operationalisation of context el-
ements is a critical factor here. This process of operational-
ising context aspects is based on constraints determination,
constraints specification, and it supports business process
instrumentation with constraints using a weaving technique
– see Fig. 1. Execution-relevant and measurable constraints
are bound to the process execution. Context constraints
determination is supported by service level agreements.

29

The autonomic composition of Web services usually starts
with a planning process based on an abstract goal [8]. An
abstract plan is produced, from which an executable ser-
vice process (e.g. in WS-BPEL) can be derived. This forms
the starting point for the integration of context constraints.
While functional aspects (also a part of the context in our
case) can be considered at the planning stage, some con-
straints are only needed during execution. We present a con-
text ontology, capturing all aspects of a service in relation to
its dynamic execution environment. The context constraints
to be integrated are generated based on service level agree-
ments and linked to constraint services (constraints bind-
ing).

Application
Process (BPEL)

WeavingServices
Profiles

Context
Ontology

Process
Instrumentation

Business
Services

Data
Collectors

Constraint
Services

Figure 1: Context Constraints Weaving Framework

3. CONTEXT ONTOLOGY MODEL
Context has been recently explored to facilitate the de-

velopment and deployment of context-aware and adaptable
Web services [9]. A modeling context for pervasive com-
puting environments, identifying location, user, activity and
computational entity as fundamental context categories is
defined by [12]. Often, location is the central context con-
cern in these platform-centric approaches, while others [5,
11] go beyond our focus on dynamic aspects.

3.1 Context Model Determination
In order to determine a comprehensive context model for

dynamic services composition, we followed an empirical ap-
proach by looking at three case studies. First, online billing
and payment for utility services gives users the flexibility
to use different types of devices and payments in different
types of currencies [2]. Second, an e-learning courseware
generation scenario reflects knowledge and information in-
tensive applications where the course content is automat-
ically generated based on information and knowledge re-
sources. Third, a multilingual convenience service scenario
reflects a service-based application in modern information,
communications and social networking environments. These
case study scenarios – which are all based on real software
systems – have been defined in three different domains to
illustrate needs of a targeted context model.

From these scenarios we have derived a context model
ontology. Four context categories are identified in the pro-
posed context ontology as Functional Context, which is use-
ful in autonomic services composition in general, Quality of
Service Context, which is useful in achieving dynamic com-
position, Semantic and Domain Context, which is useful in
achieving autonomic composition in different organizations
and the Platform Context which reflects the technology in-
frastructure.

We have considered more comprehensive business service

and process context models in order to validate the identi-
fied context aspects [5, 11, 10]. Our context ontology focus
is on the immediate layer (according to Rosemann et al.)
and the functional and input/output aspects (according to
Heravizadeh et al.). Aspects such as settlement or payment
(O’Sullivan et al.) or the outer layers of Rosemann et al.’s
onion model do not apply as they are not execution-related
and therefore not dynamically relevant. The definition of
service quality supplied by O’Sullivan et al. (measure of the
difference between expected and actual service provision)
applies here. We therefore include functional aspects into
our context model as these might vary dynamically.

3.2 Web Services Context Ontology
Based on our case study observations, we define dynamic

context as client, provider or service related information,
which enables or enhances efficient integration among clients,
providers and services [2]. Services must be aware of their
context in order to be able to automatically adapt to chang-
ing context. Choosing an ontology format provides a com-
mon vocabulary, which is machine-readable, to share context
information related to the Web services domain. A number
of individual context categories are defined in the context
ontology. These are grouped into four top-level context ar-
eas. The identified context categories are,

Functional Context: This describes the operational fea-
tures of services. The notion of functional context in Web
services is sub-grouped into Syntax, Effect and Protocol:

• Syntax: This includes the list of input/output param-
eters that define operations’ messages, the data types
of these parameters for invoking the Web service.

• Effect: Includes the pre-conditions and post-conditions,
i.e. the operational effect of an operation execution.

• Protocol Context: Refers to a consistent exchange of
messages among services involved in services compo-
sition to achieve their goals. The protocol context in-
cludes context on conversation rules and data flow.

Quality of Service Context (QoS): In service com-
puting environments, a number of services often perform a
similar function. The difference manifests itself in the form
of different levels of quality. Facilitating end-to-end quality
of service in autonomic Web service composition is a crit-
ical and significant challenge. One difficulty is to explain
what quality is and how to determine good or bad qual-
ity. End-to-end QoS is critical for a business process, which
is composed of both single and compound services [13]. Ac-
cepted definitions describe quality as ”the totality of features
and characteristics of a product or service that bear on its
ability to satisfy stated or implied needs” [7]. Stated needs
are explicitly declared by the users and implied needs refer
to requirements not known to users. Qualitative properties
can be organized into four groups based on the type of mea-
surement performed by each attribute:

• Runtime Attributes: These attributes are measurable
properties related to the execution of a service. Per-
formance; the measurement of the time behavior of
services in terms of response time, throughput etc. Re-
liability ; the ability of a service to be executed within
the maximum expected time frame. Availability ; the
probability that a service is accessible.

30

• Financial/Business Attributes: These attributes allow
the assessment of a service from a financial/ business
perspective. Cost ; the amount required for execu-
tion. Reputation; measures the service’s trustworthi-
ness. Regulatory ; a measure of how well a service is
aligned with government or organizational regulations.

• Security Attributes: These attributes describe whether
the service is compliant with security requirements.
Integrity ; protecting information from being deleted
or altered without permission. Authentication; en-
sure that both consumers and providers are identified
and verified. Non-repudiation; the ability of the re-
ceiver to prove that the sender really did send the
message. Confidentiality ; protecting information from
being read or copied by anyone not authorized.

• Trust Attributes: These attributes refer to establish-
ment of trust relationships between client and provider,
which is a combination of technical assertions (mea-
surable and verifiable quality) and relationship-based
factors (reputation, history of cooperation).

Other quality attributes or groups can be added to these
fundamental groups without loss of generality.

Domain Context: Each application domain may need
its own context (often called locale) for service interaction.
These could be organized in the following subgroups.

• Semantic: refers to the semantic framework (i.e. con-
cepts and their properties) in terms of vocabularies,
taxonomies or ontologies.

• Linguistic: the language used to express queries, func-
tionality and responses.

• Measures and Standards: refers to locally used stan-
dards for measurements, currencies, etc.

Platform Context: The technical environment a service
is executed in, could be organized as follows.

• Device: refers to the computer/hardware platform on
which the service is provided.

• Connectivity: refers to the network infrastructure used
by the service to communicate.

4. OPERATIONALISATION OF CONTEXT
CONSTRAINTS

The purpose of our context ontology is to capture context
aspects that are relevant for dynamic service process com-
position and monitoring. We weave constraints for dynamic
monitoring into processes [3, 2]. For each service, we

• determine the service profile (service interface and ser-
vice level agreement-specific aspects),

• generate constraints for each relevant aspect using the
context ontology and its instances

• create, depending on the context category an instru-
mentation binding, i.e. calls to data collectors and con-
straint services that compare observed and required
context-based constraints,

• insert the instrumentation code into an abstract busi-
ness process.

At the centre of the integration of constraint validation into
a composed service process is a mapping. Attributes of the
context model aspects are connected to concrete values at
the instance level. These form the context constraints. Pairs
of attributes with their associated values form abstract con-
straints. A preparation step for the final mapping is the
determination of data collectors and data initialisers that
support the constraint condition.

A key observation here is that the implementation of con-
straint validation is context category-dependent:

• The Functional context details, e.g. parameters and
protocol aspects. Pre/post-condition validation is used,
but no data collectors.

• The Quality of Service constraints usually require data
collectors to monitor variable quality properties before
validating constraints.

• The Domain and Platform constraints refer to data
collectors to determine environment conditions. In
contrast to the qualitative properties, these are static
properties (such as language or device) that need to
be queried, but not measured.

This category-dependency allows for uniform constraint mon-
itoring within the categories, which is an advantage for effi-
cient constraint integration.

<Receive> User Bill

Request

<Invoke> Provider Bill
Request Pre/Post

User Verification

<Invoke> Provider Bill

Response

<Invoke> User Bill

Response

Broker Verification User Verification

Bill Format Setting Currency Setting

Bill Format Setting Currency Setting

Currency VerificationBill Format Verification

Bill Format Verification Currency Verification

Constraint

Services

Data

Collectors

CurrencyType

= USD

CurrencyType

= Euro

<Reply> User Bill

Request

Pre/Post

Pre/Post

Candidate service Constraint service / Setter

Figure 2: Constraints Integrated Process

In the online billing and payment case study (Section. 3.1),
both user and service broker agree on using different devices
and currency types for utility bill payments during regis-
tration (service level agreements). The user request is the
starting point for generating context constraints based on
the agreements. The context constraints represent context
instances (generated based on the context ontology). The

31

identified Pre/post constraint services and data collectors
are bound to the process (Fig. 2). The Bill Format Verifi-
cation constraint service checks the appropriate bill format
for each display device determined by the context instance
(Device Context). Similarly, the bill amount is calculated
and set for the requested currency (Measures and Standards
Context). When a user request arrives (<receive>) from a
mobile device, the display bill format is determined. Then,
the appropriate constraint service is determined. This de-
rived context is bound to a constraint setting service (Bill
Format Setting). All constraint instrumentations are inte-
grated into the BPEL process, which is a sequence of invo-
cation of services (<invoke>). For the User Bill Response
service, the following constraint instrumentation is gener-
ated:

• Pre: initialise data collectors with the required settings
for format and currency,

• Post: verify the pre-execution settings against the ac-
tual delivered results of the service

5. RELATED WORK
The related work in this area covers previous work on con-

text modeling and constraints used in dynamic service archi-
tectures. Broens proposes a realization of a context binding
infrastructure called the Context-Aware Component Infras-
tructure (CACI). This realizes context-binding transparency
and is composed of a context binding mechanism and a con-
text discovery interoperability mechanism [4]. However, this
approach is for component-based application developments
and not specific for service process composition. Hong et
al. present a context-aware manager-based architecture to
support user-centric ubiquitous learning services, and de-
scribe an ontology-based context model for intelligent school
spaces [6]. This does not provide a solution for constraint
integration in service compositions. Medjahed et al. propose
a context-based matching approach, which has detailed in-
formation about context information and context policies,
but does not address dynamic context constraints binding
[7]. The METEOR-S project focuses on constraints-driven
services composition [1]. It distinguishes data, functional
and quality of service semantics, but semantics would need
to be further investigated. Our approach is more general
approach in capturing and operationalising the semantics of
Web services using the context model ontology with context
instances and constraint services.

6. CONCLUSIONS
We have introduced an ontology-based context framework

for dynamic Web service processes to achieve dynamic busi-
ness goals. We defined a notion of context for executable
Web service processes formalized as a context ontology. The
operationalisation of context as dynamically verifiable con-
straints is the aim. This requires the integration of con-
straint handling and the binding of the process elements to
additional constraint-verifying services.

The major contributions appeared in our approach are an
ontology-based context model and uniform constraints mod-
eling and integration approach to support a service processes
to achieve dynamic business goals.

Compositionality needs to be further addressed in two
forms. Firstly, the service process composition and its ef-
fect on service-specific constraints within the restrictions of

the context ontology need to be discussed further. Secondly,
the compositionality of constraints – to determine inconsis-
tencies in context constraints – is another open problem.

7. ACKNOWLEDGEMENT
This work is supported by the Science Foundation Ireland

through the CASCAR project.

8. REFERENCES
[1] R. Aggarwal, K. Verma, J. Miller, and W. Milnor.

Constraint driven Web service composition in
METEOR-S. In Proceedings of the IEEE
International Conference on Services Computing,
2004.

[2] K. Y. Bandara, M. Wang, and P. C. Dynamic
integration of context model constraints in Web
service processes. In International Conference on
Software Engineering. IASTED, 2009.

[3] L. Baresi and S. Guinea. Towards dynamic monitoring
of WS-BPEL processes, volume 3826 of Lecture Notes
in Computer Science. Springer, 2005.

[4] T. Broens. Dynamic context bindings - Infrastructural
support for context-aware applications. PhD thesis,
Univ. of Twente, 2008.

[5] M. Heravizadeh, J. Mendling, and M. Rosemann.
Dimensions of business processes quality (QoBP). In
Proc. of the 6th International Conference on Business
Process Management Workshops (BPM Workshops
2008), 2008.

[6] M. Hong and D. Cho. Ontology context model for
context aware learning service in ubiquitous learning
environments. International Journal of Comp., 2008.

[7] B. Medjahed and Y. Atif. Context-based matching for
Web service composition. Distributed and Parallel
Databases, 21:5–37, 2007.

[8] C. Moore, M. W. Xue, and C. Pahl. An architecture
for autonomic Web service process planning. In
Proceedings of 3rd Workshop on Emerging Web
Services Technology, 2008.

[9] M. Mrissa, C. Ghedira, D. Benslimane, and
Z. Maamar. Context and semantic composition of
Web services, volume 4080 of Lecture Notes in
Computer Science. Springer, 2006.

[10] J. O’Sullivan, D. Edmond, and A. H. M. ter Hofstede.
What’s in a service? Distributed and Parallel
Databases, 12(2/3):117–133, 2002.

[11] M. Rosemann, J. Recker, and C. Flender.
Contextualization of business processes. International
Journal of Business Process Integration and
Management, 3(1):47–60, 2008.

[12] X. Wang, D. Q. Zhang, T. Gu, and H. Pung. Ontology
based context modeling and reasoning using OWL. In
Proceedings of the Second Annual Conference on
Pervasive Computing and Communications
Workshops. IEEE, 2004.

[13] Z. Wu and J. Luo. QoS-resource graph model for
Web service composition in service oriented
computing. The Sixth International Conference on
Grid and Cooperative Computing, IEEE, 2007.

32

