
Safe Reflection Through Polymorphism

Toon Verwaest and Lukas Renggli

Software Composition Group
University of Bern, Switzerland

http://scg.unibe.ch/

Presented by Javier Cubo (University of Málaga, Spain)

CASTA 2009
August 24, 2009

Amsterdam

August 24, 2009CASTA 2009, Amsterdam 2

Agenda

Introduction

The Encapsulation Problem

Enforcing Encapsulation

Concluding Remarks

August 24, 2009CASTA 2009, Amsterdam 3

Introduction

Programming languages define high-level views over
the execution semantics of a host system

these abstractions layers hide the internal semantics

Crossing this barrier is important for building new
types of languages

Existing language implementations might not always
rely on the same assumptions as new languages

making it tedious for the new language to work around those of
the host system

backtracking support to Smalltalk realign Smalltalk’s stack frames

imposing an overhead on the performance of the new language
functional lang implemented on JVM top JVM assumes stack frames needed
for each call, while functional langs rely on recursion (tail-call optimization)

August 24, 2009CASTA 2009, Amsterdam 4

Introduction

Programming languages define high-level views over
the execution semantics of a host system

these abstractions layers hide the internal semantics

Crossing this barrier is important for building new
types of languages

Existing language implementations might not always
rely on the same assumptions as new languages

making it tedious for the new language to work around those of
the host system

backtracking support to Smalltalk realign Smalltalk’s stack frames

imposing an overhead on the performance of the new language
functional lang implemented on JVM top JVM assumes stack frames needed
for each call, while functional langs rely on recursion (tail-call optimization)

PROBLEM
It is hard for application code to cross the barrier between

the high-level model and the low-level execution engine

August 24, 2009CASTA 2009, Amsterdam 5

Introduction

Current mainstream interpreters internally consider the
application code as data

by directly accessing this data to decide on how to proceed with the
interpretation the encapsulation of the application is broken
interpreter more reflective appl breaks the interpreter assumptions

Homogeneous system
lang’s execution semantics in terms of itself encapsulation not broken

by unifying the interface between objects from the interpreter and the
application context

Characteristics
encapsulation enables reusability same interpreter used for diff langs
to bootstrap the system circular dependencies are broken

by introducing objects that know how to perform required low-level evaluation
imposing the same strong encapsulation upon all objects of the system
interpretation and application contexts communicate with each other

by using the same mechanisms

August 24, 2009CASTA 2009, Amsterdam 6

Introduction

Current mainstream interpreters internally consider the
application code as data

by directly accessing this data to decide on how to proceed with the
interpretation the encapsulation of the application is broken
interpreter more reflective appl breaks the interpreter assumptions

Homogeneous system
lang’s execution semantics in terms of itself encapsulation not broken

by unifying the interface between objects from the interpreter and the
application context

Characteristics
encapsulation enables reusability same interpreter used for diff langs
to bootstrap the system circular dependencies are broken

by introducing objects that know how to perform required low-level evaluation
imposing the same strong encapsulation upon all objects of the system
interpretation and application contexts communicate with each other

by using the same mechanisms

PROBLEM
The encapsulation of the application and

the assumptions of the interpreter are broken

PROPOSAL
Bottom-up approach to reflection

PROPOSAL
Bottom-up approach to reflection

August 24, 2009CASTA 2009, Amsterdam 7

The Encapsulation Problem

Current mainstream languages take a top-down approach
to add reflection

adding application-level objects to the interpreter-level objects

Two representations of running interpreter and their objects
application level and interpreter level

to ensure causal connection a system synchronizing the two
levels must be put in place

Reflective languages allow applications to communicate
with the interpreter through two main mechanisms

meta-object protocol
predefined memory layout

August 24, 2009CASTA 2009, Amsterdam 8

The Encapsulation Problem

Meta-object Protocol

PyPy: object-oriented Python interpreter written in itself
def get_and_call_args(space, w_descr, w_obj, args):

descr = space.interpclass_w(w_descr)
a special case for performance and
to avoid infinite recursion
if type(descr) is Function:

return descr.call_obj_args(w_obj, args)
else:

w_impl = space.get(w_descr, w_obj)
return space.call_args(w_impl, args)

Two types of functions
native functions evaluated at interpreter-level call_obj_args
user function objects evaluated at application-level call_args

Breaks the encapsulation of both interpreter and
application level function objects

August 24, 2009CASTA 2009, Amsterdam 9

The Encapsulation Problem

Predefined Memory Layout

Squeak: an open-source Smalltalk implementation

highly reflective system allowing developers to use any object as
a class if the object follows a certain memory layout

first slot reference to the superclass
second slot reference to a dictionary of methods
third slot contain an integer encoding various properties of the
class (size of instances)

August 24, 2009CASTA 2009, Amsterdam 10

The Encapsulation Problem

In both previous cases violation of the
encapsulation of the objects

the duality in representation causes problems
by not forcing conformity with both representations

the interpreter-level API of application-level objects abused
even from the application-level to go around encapsulation
designed to protect objects from the outside world

August 24, 2009CASTA 2009, Amsterdam 11

Unifying interface between code of the interpreter
and application contexts

preserving encapsulation across the meta-barrier

Code from both contexts communicates through this
unified interface

By providing a common reflective interface
encapsulation ensured at a single place

language becomes reflective through the meta-object
protocol of the interpreter

Enforcing Encapsulation

August 24, 2009CASTA 2009, Amsterdam 12

SchemeTalk: object-oriented language built on top of Scheme
combines syntax of Scheme with message passing semantics of Smalltalk
prototype implementation uses closures to capture the state of objects

Class
(define-class Person

:superclass Object
:instvars email
:methods
(setEmail! (arg) (self ’set-email! arg))
(getEmail () (self ’get-email)))

Sending a message
> (define john (Person ’new))
; sets John’s email
> (john ’setEmail! "john@doe.com")
; retrieves the email
> (john ’getEmail) "john@doe.com"

Scheme code in the interpreter context
(+ 39 21)

Enforcing Encapsulation

August 24, 2009CASTA 2009, Amsterdam 13

Interfaces provided by SchemeTalk objects are the
same as those provided by Scheme closures

non-reflective encapsulation of objects guaranteed

Sending a message to an object in SchemeTalk a
lookup in the class hierarchy

once a method object is found system sends the
message ’execute to the method object with the args

The class of a method is implemented using the same
infrastructure as the previous model class

Enforcing Encapsulation

August 24, 2009CASTA 2009, Amsterdam 14

; Application context
(define-class Method

:superclass Object
:instvars interp-code
:methods
(initialize (interp-code)

(self ’set-interp-code! interp-code))
(execute args

(apply (self ’get-interp-code) args)))

; Interpreter context
(define (create-object class layout)

(let ((instvars (create-instvars layout)))
(define (self msg . args)

(or (find-instvar instvars msg)
(let ((method (class ’lookup msg)))

(method ’execute args))))
self))

Enforcing Encapsulation

August 24, 2009CASTA 2009, Amsterdam 15

self object of the execution engine it is defined using
concepts of the message send of the application context

code defining the semantics for method execution itself depends
on the semantics of the method execution

In traditional systems this circular dependency is
broken by not directly relying on objects in the
application context

methods would be tagged interpreter objects
interpreter checks if the looked up method is an object internal
to the interpreter it natively executes its code
reflective interp would allow appls to insert custom methods

by falling back to normal message sends in case the retrieved
object was not an interpreter-level object

Enforcing Encapsulation

August 24, 2009CASTA 2009, Amsterdam 16

This way of building a system is not object-oriented
in OO system the behaviour types would be decided based
on the polymorphic behaviour of the retrieved object
instead this way breaks the encapsulation of the object by
directly checking its runtime type

To break the circular dependency in an OO fashion
VM must ensure that objects from application context
support the same interface as objects from interpretation
context (polymorphism)

Enforcing Encapsulation

August 24, 2009CASTA 2009, Amsterdam 17

Scheme easily builds code in interpreter context
using the same interface as SchemeTalk objects

dispatch-objects introduce OO to Scheme
by adding objects which directly understand a set of
messages

define (method-class interp-code)
(letrec ((self (lambda (msg . args)

(case msg
((execute) (apply interp-code args))

(else
; Remember that Method is the class
; for methods written in SchemeTalk.

(let ((method (Method ’lookup msg)))

(method ’execute args))))))) self))

Enforcing Encapsulation

August 24, 2009CASTA 2009, Amsterdam 18

In contrast to traditional reflective systems this
implementation is safe by design

unified interface of interpreter and application level objects
applications directly communicate with interpreter’s objects
through the same interface as other objects
by avoiding duality and related synchronization problems

objects never break encapsulation of other objects the
interpreter-level objects cannot read raw memory

by making wrong assumptions about the handled objects

properly implemented encapsulation enforces the
interpreter to handle all objects safely

Enforcing Encapsulation

August 24, 2009CASTA 2009, Amsterdam 19

Concluding Remarks

An encapsulation problem between code running in application and
interpreter level has been identified

that limits the reuse of interpreter code

The presented approach ensures the encapsulation by unifying the
interface between objects from interpreter and application contexts

system built in terms of itself breaking the circular dependencies
by preserving encapsulation of interp context objects polymorph to appl context ones

ShemeTalk implementation only demonstrated the integration of methods
into a language

the proposed technique should be applied on levels of any context-aware lang

Current implementation of this approach is run on top of a mostly non-
reflective system making the performance suffer

to gain performance bring the system to the level of the host language
which can only be done from within a language if it is reflective

to bootstrap such an environment work with the lowest system available (HW)

August 24, 2009CASTA 2009, Amsterdam 20

Thanks a lot for your attention!

Congratulations to the authors for this work!

